Правило фаз гиббса

Правило фаз гиббса

Любая гетерогенная система состоит из отдельных гомогенных, физически или химически различных, механически отделимых друг от друга частей, называемых фазами. Например, насыщенный раствор хлорида натрия с кристаллами NaCl в осадке и водяным паром над раствором — это система, состоящая из 3 фаз: жидкого раствора, твердой соли и газообразной воды. Фазы имеют различный химический состав и физические свойства и могут быть разделены чисто механическими операциями: раствор можно отфильтровать от осадка, а пар собрать в любом свободном объеме системы.

Фаза — это совокупность всех гомогенных частей гетерогенной системы,
отделенная от других частей системы четкими поверхностями раздела
(межфазными границами).

Химический состав и свойства остаются постоянными внутри объема, занимаемого фазой. При переходе через межфазную границу состав и свойства меняются скачком. Поскольку газы полностью смешиваются друг с другом, в системе может быть только одна газовая фаза, но много твердых и жидких несмешивающихся фаз.

Числом компонентов К, называется наименьшее число независимо
изменяющихся веществ, с помощью которых можно описать состав каждой
фазы в системе в отдельности.

Это определение легко применить, когда вещества не реагируют друг с другом. Так, смесь воды и этанола – двухкомпонентная система. Ситуация усложняется, когда химическая реакция приводит к равновесию между веществами в системе. Число компонентов меньше числа веществ, образующих систему, потому что при равновесии концентрации различных веществ связаны определенными соотношениями. Существуют два типа уравнений связи:

  • уравнения химического равновесия,
  • дополнительные условия, которые связывают концентрации веществ или состав фаз.

где s — число веществ,
n — число независимых химических реакций,
m — число соотношений между концентрациями веществ или составами фаз.

Приведем другой метод определения числа независимых компонентов. Пусть имеется система из нескольких фаз в равновесии, и пусть химическим анализом определен состав каждой фазы. Если все фазы имеют одинаковый состав, то система состоит только из одного компонента. Если две фазы должны быть соединены друг с другом, чтобы получить состав третьей фазы, то имеется система из двух компонентов; если необходимы три фазы, чтобы дать состав четвертой — то в системе три компонента и т.д.

Выбор компонентов зачастую произволен, но число компонентов К — величина фиксированная, она является важной характеристикой системы при данных условиях.

Пример 1. Твердый оксид кальция, твердый карбонат кальция и газообразный диоксид углерода находятся в равновесии. Общее число веществ s=3. Число независимых компонентов уменьшается на единицу ( т.е. К=s-n=3-1=2 ), благодаря наличию химического равновесия, в котором участвуют три фазы:

CaCO3 (тв.) CaO(тв.) + CO2(газ) . (2)

Равновесие описывается следующей константой:

т.к. активности твердых веществ равны единице (CaCO3 и CaO нерастворимы друг в друге). Данная константа не зависит от количеств карбоната и оксида кальция, принимающих участие в равновесии. Следовательно, система остается двухкомпонентной и в том случае, когда СаО и СО2 получаются при диссоциации СаСО3. Эти рассуждения будут справедливы для разложения любого твердого вещества с образованием газообразной и твердой фазы другого состава. Карбонат кальция представляет пример вещества, которое испаряется с разложением, или инконгруэнтно. В данном случае вполне естественно в качестве независимых компонентов выбрать СаО и СО2. Возможны и другие пары компонентов: СаСО3 и СаО, СаСО3 и СО2.

Пример 2. Водород и кислород находятся в равновесии с водяным паром ( s=3, n=1 ). В этой однофазной системе существует два независимых компонента (H2O и O2, H2O и H2 или H2 и O2), потому что состав третьего определяется из уравнения равновесия:

2 H2O(газ) 2 H2(газ) + O2(газ) . (4)

Если указаны дополнительные условия, то число компонентов уменьшается до единицы ( K=s-n-m=3-1-1=1 ). Например, если водород и кислород образуются только из воды, то имеется еще одно дополнительное уравнение связи рH2 = 2рO2 (m=1), которое отражает равновесный состав газовой смеси.

Пример 3. При нагревании хлорид аммония диссоциирует на аммиак и хлороводород. В этой системе 2 фазы ( твердая — хлорид аммония, и газообразная — смесь аммиака и хлороводорода) и 3 вещества ( s=3 ), но только количество одного из них изменяется независимо. Химическое равновесие ( n=1 ):

NH4Cl(тв.) NH3(газ) + HСl(газ) , (5)

с учетом того, что (состав твердой фазы) = (составу газовой фазы) (m=1), позволяет выбрать одно вещество — NH4Cl, для описания составов обеих фаз ( K=s-n-m=3-1-1=1).

Если к газовой фазе добавить один из продуктов диссоциации, например HCl, то система станет двухкомпонентной, поскольку состав твердой фазы как и прежде — NH3 : HCl = 1 : 1, а в газовой фазе NH3 : HCl = x : y ( s=3, n=1, m=0 ). Для выражения состава газовой фазы теперь нужно использовать два компонента — NH3 и HCl.

Эти рассуждения справедливы для разложения любого вещества с образованием только газовой фазы ( т.е. для вещества, которое возгоняется при нагревании ). О таких веществах говорят, что они испаряются конгруэнтно.

Рассмотрим систему вода – этанол. Известно, что в ней может образовываться третье вещество – слабо связанный димер воды и этанола. Должны ли мы называть эту систему трехкомпонентной? Считаем, что три вещества вода, этанол и димер находятся в равновесии, тогда, несмотря на то, что s = 3, имеем n = 1 и K = 2. Еще один вид ограничений связан с ионными растворами.

Задача 1. Сколько независимых компонентов содержится в системе NaCl – H2O?

Решение: Первый ответ – два: соль и вода. Второй – три: катион, анион и вода. Ошибка второго ответа заключается в следующем: в нем не учитывается электронейтральность раствора; раствор не может иметь заряда, поэтому число ионов Na + должно быть равно числу ионов Cl — . Т.е., s=3, но m=1(условие электронейтральности раствора [Na + ] = [Cl — ]) и, следовательно, К=2. Такой же результат будет получен, если принимать во внимание диссоциацию воды.

Числом степеней свободы С, называется наименьшее число независимых переменных системы (давление, температура и концентрации веществ в различных фазах), которые необходимо задать, чтобы полностью описать состояние системы.

В 1876 г. Гиббс вывел простую формулу, связывающую число фаз, находящихся в равновесии, число компонентов и число степеней свободы системы. При равновесии должны быть выполнены следующие условия:

  • давление (р) и температура (Т) одинаковы во всех точках системы,
  • химический потенциал ( i) каждого i-го компонента одинаков во всех фазах.

Рассмотрим равновесную систему из Ф фаз и К компонентов. Состав каждой фазы можно определить с помощью (К-1) концентраций, поскольку все концентрации связаны условием: S Xi = 1, где Xi — мольная доля i-го компонента. Общее число переменных, характеризующих систему = (К-1) . Ф концентраций + 2 (температура и давление).

Если одна из этих переменных (температура или давление) поддерживается постоянной, то число независимых переменных составит (К-1) . Ф + 1. Если же на систему действует, например, внешнее магнитное поле, то общее число независимых переменных увеличится и составит (К-1) . Ф + 3.

Часть переменных связана уравнениями, вытекающими из условий равновесия (см.второе условие равновесия):

1 1 = 1 2 = … = 1 Ф

2 1 = 2 2 = … = 2 Ф

К 1 = К 2 = … = К Ф

Общее число таких уравнений = (число строк) х (число равенств в строке) =К . (Ф-1).
Число степеней свободы С=(общему числу переменных)-(число уравнений связи между этими переменными)=[(К-1) . Ф + 2] — К . (Ф-1); раскрывая скобки и группируя слагаемые получим :

Правило фаз Гиббса: С + Ф = К + 2

Согласно этому правилу, чем больше компонентов в системе, тем больше степеней свободы; с другой стороны, чем больше фаз тем меньше переменных, необходимо определить для полного описания системы.

  • Для любой системы число фаз максимально, когда С=0.
  • Для однокомпонентной системы К=1 максимальное число фаз Ф=3.
  • Для двухкомпонентной системы К=2 максимальное число фаз Ф=4.

Пример 4. Рассмотрим систему, образованную CaCO3 (тв.) и продуктами его разложения — CaO(тв.) и CO2(газ). Данная система двухкомпонентна — К=2, независимо от относительных количеств составляющих ее веществ (см. Пример 1); в системе присутствуют три фазы (Ф=3): две твердых — CaCO3 (тв.) и CaO(тв.), и одна газообразная — CO2(газ). Согласно правилу фаз, число степеней свободы такой системы С=1. Это означает, что для описания состояния системы достаточно одного параметра. Предмет нашего описания — химическое равновесие, выраженное уравнением (2). Константа данного равновесия зависит от парциального давления углекислого газа ( уравнение (3)) и температуры, т.е. Кр=f(pCO2,T); однако, лишь один из двух параметров состояния системы — pCO2 и T, может быть выбран в качестве независимого параметра. В качестве такового удобно выбрать температуру, тогда pCO2 = f(T). Следовательно, давление углекислого газа в системе, содержащей карбонат и оксид кальция и оксид углерода в равновесии, однозначно определяется температурой системы. При постоянной температуре это давление — фиксированная величина, его можно вычислить через константу равновесия, используя термодинамические функции веществ. В случае Т=const нужно заменить двойку в выражении правила фаз на единицу ( С + Ф = К + 1, см.вывод правила фаз ), тогда получим, что число степеней свободы данной системы при постоянной температуре С=0.

Приведенные выше рассуждения справедливы для любой двухкомпонентной системы, в которой находятся в равновесии три фазы, одна из которых — газообразная. При постоянной температуре давление газа в такой системе есть величина постоянная и не зависит от соотношения фаз.

Пример 5. Хлорид аммония в равновесии с продуктами его диссоциации представляет однокомпонентную систему (К=1, см. Пример 3) с двумя фазами (Ф=2): твердой — NH4Cl(тв.), и газообразной — смесь NH3(газ) и HСl(газ). Применив к данной системе правило фаз, получим число степеней свободы С=1. Это означает, что для описания химического равновесия (5) в нашем случае достаточно одной переменной. Константа равновесия имеет вид:

поскольку pNH3 = pHCl = р/2 ( р = (pNH3 + pHCl) — общее давление продуктов диссоциации). Таким образом, Кр = f(p,T), но только один из аргументов функции является независимым. Выбирая, как и в предыдущем примере, в качестве независимого параметра температуру, получим p=f(T), т.е. давление продуктов диссоциации в рассматриваемой системе однозначно определяется температурой.

Добавление в систему одного из продуктов диссоциации, например, HСl(газ), кардинально меняет ситуацию. Несмотря на то, что число фаз остается прежним — Ф=2, данную систему уже нельзя считать однокомпонентной, число компонентов становится равным К=2 (см. Пример 3). Это приводит и к увеличению числа степеней свободы, теперь С=2. Поскольку в данной системе pNH3 pHCl, для выражения константы равновесия через общее давление газообразных продуктов, придется выразить парциальные давления аммиака и хлороводорода через их мольные доли: pHCl = p . x, pNH3=p . (1-x) (здесь х — мольная доля хлороводорода в газовой смеси). Отсюда константа равновесия будет иметь следующий вид:

Таким образом, константа есть функция 3 переменных — Kp = f(p,x,T), но только две из них являются независимыми. Выбирая в качестве таковых состав газовой фазы (х) и температуру (Т), получим p = f(x,T). Выбранные нами переменные однозначно определяют состояние данной системы.

Зафиксировав температуру, мы уменьшим число степеней свободы до С=1. Это означает, что из двух оставшихся переменных — р, х, только одна является независимой, т.е. p = f(x). Полученный нами вывод проливает свет на один замечательный экспериментальный факт: добавление одного из продуктов диссоциации, например HCl, к системе, содержащей твердый NH4Cl и продукты его испарения, при постоянной температуре, изменяет общее давление в системе. Это не так в случае системы из CaCO3, CaO и CO2 при постоянной температуре, которая рассматривалась в предыдущем примере. Добавление избытка СО2 приводит к реакции его с оксидом кальция с образованием СаСО3, и давление в системе (определяемое давлением СО2) возвращается к первоначальному состоянию.

Фазовые равновесия. Правило фаз гиббса.

Фазой называется гомогенная часть гетерогенной системы, имеющая во всех точках одинаковые значения интенсивных параметров, которые изменяются скачком на границе раздела фаз.

Фазовым переходом называется переход вещества из одной фазы в другую.

Фазовыми равновесиями называют равновесия в гетерогенных системах, в которых имеют место только фазовые переходы и отсутствуют химические взаимодействия между компонентами.

При переходе из одной фазы (1) в другую фазу (2) dni молей i–ого компонента (например, при конденсации пара или кристаллизации осадка), энергия Гиббса каждой из фаз изменится на величину:

для фазы 1 ,

для фазы 2 .

Общее изменение энергии Гиббса равно:

. (1)

Если переход происходит в условиях равновесия при T, р = const, то

, и .

Этот вывод распространяется на любой компонент и на любую фазу системы. Итак, равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах при T, p = const. Если же химический потенциал некоторого вещества в одной фазе (в одном растворе) будет больше, чем в другой фазе (в другом растворе), то вещество будет самопроизвольно переходить из первой фазы в другую.

Рассмотрим систему, содержащую К компонентов и состоящую из Ф фаз, находящихся в равновесии между собой. Состав каждой из фаз определяется концентрациями – 1) компонентов, а так как число всех фаз равно Ф, то состав всей системы определится Ф(К – 1) концентрациями всех компонентов. Для полного описания состояния системы необходимы ещё температура и давление, т. е. всего Ф (К – 1) + 2 переменных.

Условием равновесия гетерогенной системы из Ф фаз и К компонентов (как отмечалось ранее) является постоянство температуры и давления, а также равенство всех химических потенциалов каждого из компонентов во всех фазах:

. , (2)

. . (3)

Здесь верхние индексы обозначают номера фаз, нижние индексы относятся к соответствующим компонентам.

В вышеприведенных равенствах каждое значение является функцией температуры, давления и концентрации всех компонентов. Например, для двухкомпонентной системы:

Следовательно, каждое равенство из (4.3) (например ) даёт уравнение, связывающее переменные системы. Эти уравнения уменьшают число независимых переменных, характеризующих систему, и называютсяуравнениями связей.

Обозначим через f число действительно независимых переменных. Тогда

, (4)

. (5)

Последнее соотношение было получено Дж. Гиббсом и носит название уравнения (правила фаз) Гиббса. Равновесные гетерогенные системы, состоящие из любого числа фаз и любого числа веществ, подчиняются правилу фаз Гиббса. Его можно сформулировать следующим образом:

число степеней свободы равновесной термодинамической системы, на которую из внешних факторов влияют только давление и температура, равно числу компонентов системы плюс два, минус число фаз:

,

где Кчисло компонентов – веществ, наименьшее число которых необходимо и достаточно для образования всех возможных фаз данной равновесной системы. Компонент является составной частью системы и может быть выделен из нее, и существовать самостоятельно;

fчисло степеней свободы – число независимых термодинамических параметров, определяющих состояние системы, изменение которых в определенных пределах не вызывает исчезновения одних и образование других фаз;

число 2 — это число внешних факторов (Р и Т), которые влияют на равновесие.

Перепишем уравнение (4.5) в виде

, (6)

тогда при находим, что

, (7)

т.е. максимальное число фаз в гетерогенной системе при равновесии равно числу компонентов плюс два.

Если р или Т = const, то правило фаз Гиббса запишется как

Правило фаз Гиббса

Правило фаз Гиббса утверждает, что число степеней свободы С равновесной термодинамической системы равно разности между числом компонентов К и числом фаз Ф, плюс число факторов п, влияющих на равновесие:

(5.1)

Правило фаз позволяет но числу степеней свободы предсказывать поведение системы при изменении одного, двух или более внешних условий и вычислить максимальное число фаз, которые могут находиться в равновесии при данных условиях. При помощи правила фаз можно предсказать термодинамическую возможность существования системы.

Обычно величина п = 2, так как учитываются только два фактора: температура и давление. Другие факторы (электрические, магнитные, гравитационные) учитываются но мере необходимости. Тогда число степеней свободы равно

Если в системе температура (или давление) сохраняется постоянной, то число параметров состояния снижается еще на единицу

Если же в системе поддерживаются постоянными температура и давление (п = 0), то число степеней равно

Число степеней свободы для однокомпонентной двухфазной системы (например, кристалл — жидкость, кристалл — пар, жидкость — пар) равно

Это означает, что каждой температуре отвечает одно единственное значение давления и, наоборот, любое давление в двухфазной однокомпонентной системе реализуется только при строго определенной температуре.

Следовательно, нагревание любых двух сосуществующих фаз должно сопровождаться одновременно строго определенным изменением давления, т.е. температура и давление двух фаз связаны функциональной зависимостью P=f (Т).

Пример 5.1. Определить наибольшее число фаз, которые могут находиться в равновесии в системе, состоящей из воды и хлорида натрия.

Решение. В этой системе число компонентов (К) равно двум. Следовательно, С = = 4 — Ф. Наибольшее число фаз отвечает наименьшему числу степеней свободы. Так как число степеней свободы не может быть отрицательным, то наименьшее значение С равно нулю. Следовательно, наибольшее число фаз равно четырем. Этому условию заданная система удовлетворяет, когда раствор хлорида натрия в воде находится в равновесии одновременно со льдом, твердой солью и водяным паром. В таком состоянии система безвариантна (инвариантна), т.е. это состояние достигается только при строго определенных температуре, давлении и концентрации раствора.

Однокомпонентные системы

При К = 1 уравнение правила фаз примет вид

Если в равновесии одна фаза, то С = 2. В этом случае говорят, что система бивариантна;

две фазы — С = 1, система моновариантна;

три фазы — С = 0, система инвариантна.

Диаграмма, выражающая зависимость состояния системы от внешних условий или от состава системы, называется фазовой диаграммой. Соотношение между давлением (р), температурой (7) и объемом (V) фазы можно представить трехмерной фазовой диаграммой. Каждая точка (се называют фигуративной точкой) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р — Т (при V = const) или плоскостью р — V (при Т = const). Разберем более детально случай сечения плоскостью р — Т(при V = const).

Рассмотрим в качестве примера фазовую диаграмму одиокомпонентной системы — воды (рис. 5.1).

Фазовая диаграмма воды

Фазовая диаграмма воды в координатах р — Т представлена на рис. 5.1. Она составлена из трех фазовых полей — областей различных (р, Т) значений, при которых вода существует в виде определенной фазы — льда, жидкой воды или пара (обозначены буквами Л, Ж и П соответственно). Для этих однофазных областей число степеней свободы равно двум, равновесие бивариантно (С = 3 — 1 = 2). Это означает, что для описания системы необходимы две независимые переменные — температура и давление. Эти переменные могут изменяться в данных областях независимо, и при этом не произойдет изменения вида и числа фаз.

Фазовые поля разделены тремя граничными кривыми.

Рис. 5.1. Фазовая диаграмма воды

Кривая AВкривая испарения, выражает зависимость давления пара жидкой воды от температуры (или представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию жидкая вода — пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 — 2 = 1. Такое равновесие моновариаптно. Это означает, что для полного описания системы достаточно определить только одну переменную — либо температуру, либо давление. Вторая переменная является зависимой, она задается формой кривой ЛВ. Таким образом, для данной температуры существует только одно равновесное давление или для данного давления пара — только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара.

При давлениях и температурах, соответствующих точкам выше линии , пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения находится в точке В, которая называется критической точкой (для воды 374°С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/ пар), поэтому Ф = 1.

Линия АС — это кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры. Эта линия соответствует моновариаптному равновесию лед — пар (С = 1). Выше линии АС лежит область льда, ниже — область пара.

Линия AD кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариаптному равновесию лед — жидкая вода. Для большинства веществ линия AD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объему чем лед. На основании принципа Ле-Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.e. точка замерзания будет понижаться.

Исследования, проведенные ГТ.-У. Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различных кристаллических модификаций льда, каждая из которых, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD — точка Д где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22°С и 2450 атм.

Тройная точка воды (точка, отражающая равновесие трех фаз — жидкости, льда и пара) в отсутствии воздуха находится при 0,0100°С и 4,58 мм рт. ст. Число степеней свободы С = 3 — 3 = 0, и такое равновесие называют инвариантным. При изменении любого параметра система перестает быть трехфазной.

В присутствии воздуха три фазы находятся в равновесии при 760 мм рт. ст. и 0°С. Понижение температуры тройной точки на воздухе вызвано с л еду ющи м при ч и нам и:

1) растворимостью газообразных компонентов воздуха в жидкой воде при 1 атм, что приводит к снижению тройной точки на 0,0024°С;

2) увеличением давления от 4,58 мм рт. ст. до 1 атм, которое снижает тройную точку еще на 0,0075°С.

Фазовая диаграмма серы

Кристаллическая сера существует в виде двух модификаций — ромбической (Sр) и моноклинной (SМ). Поэтому возможно существование четырех фаз: ромбической, моноклинной, жидкой и газообразной (рис. 5.2).

Сплошные линии ограничивают четыре области: пара, жидкости и двух кристаллических модификаций. Сами линии отвечают моновариантным равновесиям двух соответствующих фаз. Заметьте, что линия равновесия

моноклинная сера — расплав отклонена от вертикали вправо (сравните с фазовой диаграммой воды). Это означает, что при кристаллизации серы из расплава происходит уменьшение объема. В точках А, В и С в равновесии сосуществует три фазы (точка А ромбическая, моноклинная и пар, точка В — ромбическая, моноклинная и жидкость, точка С — моноклинная, жидкость и пар). Легко заметить, что есть еще одна точка О, в которой существует равновесие трех фаз — перегретой ромбической серы, переохлажденной жидкой серы и пара, пересыщенного относительно пара, равновесного с моноклинной серой. Эти три фазы образуют метастабилъную систему, т.е. систему, находящуюся в состоянии относительной устойчивости. Кинетика превращения метастабильных фаз в термодинамически стабильную модификацию крайне медленна, однако при длительной выдержке или внесении кристаллов-затравок моноклинной серы все три фазы все же переходят в моноклинную серу, которая является термодинамически устойчивой в условиях, отвечающих точке О. Равновесия, которым соответствуют кривые ОА, ОВ и ОС (кривые возгонки, плавления и испарения соответственно), являются метастабильными.

Рис. 5.2. Фазовая диаграмма серы

Уравнение Клаузиуса — Клапейрона

Движение вдоль линий двухфазного равновесия на фазовой диаграмме (С = 1) означает согласованное изменение давления и температуры, т.е. Р = f(T). Общий вид такой функции для однокомпонентных систем был установлен Клапейроном.

Допустим, мы имеем моновариантное равновесие вода — лед (линия AD на рис. 5.1). Условие равновесия будет выглядеть так: для любой точки с координатами (р, Г), принадлежащей линии AD.

Для однокомпонентной системы р = dG/dv, где G— свободная энергия Гиббса, a v — число молей. Нужно выразитьФормула ΔG =

= ΔН — TΔS для этой цели не годится, так как выведена для р, Т = const. В соответствии с уравнением (4.3)

Согласно первому закону тегшолинамикиа согласно второму закону термодинамики _, причемж Тогда

Очевидно, что в равновесии

так как количество образовавшегося льда в состоянии равновесия равно количеству образовавшейся воды). Тогда

— мольные (т.е. деленные на количество молей) объемы воды и льда; Sводы, Sльда — мольные энтропии воды и льда. Преобразуем полученное выражение в

(5.2)

где ΔSф, ΔVф п — изменение мольных энтропии и объема при фазовом переходе (лед -> вода в данном случае).

Посколькуто чаще применяют следующий вид уравнения:

где ΔHф п — изменение энтальпии при фазовом переходе; ΔV п — изменение мольного объема при переходе; ΔTф п — температура, при которой происходит переход.

Уравнение Клапейрона позволяет, в частности, ответить на следующий вопрос: какова зависимость температуры фазового перехода от давления? Давление может быть внешним или создаваться за счет испарения вещества.

Пример 5.2. Известно, что лед имеет больший мольный объем, чем жидкая вода. Тогда при замерзании воды ΔVф „ = V|ьда — Vводы > 0, в то же время ДHф „ = = ДHК т.е. от одной точки (р,, 7,), лежащей на линии равновесия жидкость — пар, до другой — 2, Т2):

Результат интегрирования запишем в виде

(5.6)

называемым иногда уравнением Клаузиуса — Клапейрона. Оно может быть использовано для расчета теплоты испарения или возгонки, если известны значения давлений пара при двух различных температурах.

Энтропия испарения

Мольная энтропия испаренияравна разности

Поскольку то можно полагать

Следующее допущение состоит в том, что пар считают идеальным газом. Отсюда вытекает приблизительное постоянство мольной энтропии испарения жидкости при температуре кипения, называемое правилом Трутона.

Правило Трутона: мольная энтропия испарения любой жидкости составляет величину порядка 88 ДжДмоль • К).

Если при испарении разных жидкостей не происходит ассоциации или диссоциации молекул, то энтропия испарения будет приблизительно одинакова. Для соединений, образующих водородные связи (вода, спирты), энтропия испарения больше 88 ДжДмоль • К). Правило Трутона позволяет определить энтальпию испарения жидкости по известной температуре кипения, а затем но уравнению Клаузиуса — Клапейрона определить положение линии моновариантного равновесия жидкость — пар на фазовой диаграмме.

Пример 5.3. Оценить давление пара над диэтиловым эфиром при 298 К, зная его температуру кипения (308,6 К).

Решение. Согласно правилу Трутона AS..rn = 88 ДжДмоль • К), с другой стороны,

Применим уравнение Клаузиуса — Клапейрона (5.6), учитывая, что при кипении (T = 308,6 К) давление паров эфира р = 1 атм. Тогда имеем: In /; — In 1 = 27,16 х х 10 3 /8,31(1/308,6 — 1/Т), или In р = -3268/7′ + 10,59 (и это является уравнением линии моновариантного равновесия жидкость — пар па фазовой диаграмме эфира). Отсюда, при Т = 298 К (25°С), р = 0,25 атм.

Энтропия плавления не так постоянна для разных веществ, как энтропия испарения. Это связано с тем, что беспорядок (мерой которого является энтропия) возрастает при переходе от твердого к жидкому состоянию не столь сильно, как при переходе в газообразное состояние.

Еще по теме:

  • Унифицированная форма приказов на командировки Унифицированная форма № Т-9 - приказ на командировку Отправить на почту Унифицированная форма Т-9 с 2015 года стала единственным документом, удостоверяющим факт направления сотрудника фирмы или ИП в командировку. Рассмотрим, как она заполняется и где можно найти форму Т-9. Значение […]
  • Правила оформления положений АДМИНИСТРАТИВНО-ОРГАНИЗАЦИОННЫЕ ДОКУМЕНТЫ Административно-организационные документы предназначены для обеспечения решения широкого круга задач управления людьми и экономическими объектами как глобального (межгосударственного и государственного) уровня, так и локального - предприятиями, […]
  • Проверка предметов залога Проверка залога Залоговое имущество, выступающее обеспечением возвратности кредита, подлежит регулярной проверке со стороны банка-кредитора на предмет наличия и сохранности. Периодичность проводимых проверок наличия и сохранности предмета залога зависит от вида залогового имущества. […]
  • Образец приказа на совмещение должности на время отпуска Доплата за совмещение должностей на время отпуска: правила и оформление Сотрудники предприятия периодически уходят в отпуск, но их отсутствие не должно отражаться на результатах хозяйственной деятельности. Передать обязанности и полномочия можно коллегам. Поскольку в результате таких […]
  • Государственная программа патриотическое воспитание граждан рф на 2018 "Региональный центр патриотического воспитания" Государственная программа “Патриотическое воспитание граждан Российской Федерации на 2016 – 2020 годы”. Правительство России утвердило госпрограмму “Патриотическое воспитание граждан РФ”. Ее координатором является Росмолодежь. Сообщается, […]
  • Налог на имущество на новостройку Налог на имущество со свежих квартир Тему статьи предложила Ирина Сергеевна Викторова, г. Москва. Собственники квартир в домах, построенных в последние 3 года, не получили из налоговой инспекции уведомление на уплату налога на имущество за 2013 и 2014 гг. Почему это произошло, нужно ли […]
  • Картина божьего суда Иконография Страшного суда Суда Твоего, Господи, боюся и мукибесконечныя, злое же творя не престаю… Прп. Иоанн Дамаскин В чреде дней, приготовительных к Святой Четыредесятнице, неделя мясопустная – о Страшном суде – является, пожалуй, наиболее выразительной как в гимнографическом, так и […]
  • Карикатура на адвоката Карикатуры на школьную тему Кто из нас не рисовал в школе во время урока? Особенно когда было немного скучно. Наверное только тот, кто не учился в школе. А некоторые ученики с особым художественным талантом и богатой фантазией рисовали карикатуры на учителя, своих товарищей или директора […]