Площадь многоугольника правило

Площадь фигур

Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Для вычисления площади квадрата нужно умножить его длину на саму себя.

SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см 2

Формулу площади квадрата, зная определение степени, можно записать следующим образом:

Площадь прямоугольника

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

SABCD = AB · BC

SABCD = 3 · 7 = 21 см 2

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

SABCE = AB · BC
SEFKL = 10 · 3 = 30 м 2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м 2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м 2

Ответ: S = 65 м 2 — площадь огородного участка.

Свойство ниже может вам пригодиться при решении задач на площадь.

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

АС — диагональ прямоугольника ABCD . Найдём площадь треугольников ABC и ACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см 2

S ABC = SABCD : 2

S ABC = 20 : 2 = 10 см 2

S ABC = S ACD = 10 см 2

Урок математики по теме:»Площадь многоугольника»

Цели:

  • обучающие: научить учащихся находить площадь многоугольника, используя выбранные ими способы, сформировать начальные представления
  • многоугольнике, графические и измерительные навыки;
  • развивающие: развитие способов умственной деятельности учащихся при выполнении заданий от наблюдения, расчетов до выяснения закономерностей вычисления площади многоугольника;
  • воспитывающие: раскрытие субъективного опыта учащихся, поощрение действий, стремлений учащихся как основы воспитания положительных качеств личности;
  • методическая: создание условий для проявления познавательной активности учащихся.

Оснащение урока:

  1. Оформление доски: слева — фигуры многоугольника, справа — чистое полотно доски для записи на уроке, в центре – многоугольник-прямоугольник.
  2. Листок “К исследованию”.
  3. Инструментарии учителя и учащихся (мел, указка, линейка, листок исследования, фигуры, ватман, маркер).

Метод урока:

  • По взаимодействию учителя и учащихся – диалог-общение;
  • По способу решения задач – частично-поисковый;
  • По способу умственной деятельности — (СУД) развивающее обучение.

Форма урока — фронтальная, в парах, индивидуальная.

Тип урока — урок усвоения новых знаний, умений и навыков.

Структура урока — постепенное углубление в тему, гибкая, диалогическая.

Ход урока

Урок прекрасен и приносит радость, когда мы мыслим, дружно работаем. Сегодня мы будем рассматривать фигуры, определять их названия, думать, искать и находить решения. Пожелаем друг другу успешной работы.

Рассмотрите фигуры (на доске многоугольники).

Они все вместе. Почему? Какой у них общий признак? (Многоугольники).

Назовите этот многоугольник (5-угольник, 6-угольник…)

Может быть, вы знаете, что такое площадь многоугольника?

Тогда покажите на одной из фигур.

(Обобщение учителем: площадь — часть плоскости внутри замкнутой геометрической фигуры.)

В русском языке это слово имеет несколько значений.

(Ученик по словарю знакомит со значениями.)

  1. Часть плоскости внутри замкнутой геометрической фигуры.
  2. Большое незастроенное и ровное место.
  3. Помещение для какой-либо цели.

Какое из значений используется в математике?

В математике используется первое значение.

(На доске фигура).

Это многоугольник? Да.

Назовите фигуру по-другому. Прямоугольник.

Покажи длину, ширину.

Как найти площадь многоугольника?

Запишите при помощи букв и знаков формулу.

Если длина нашего прямоугольника 20 см, ширина 10см. Чему равна площадь?

Площадь равна 200 см 2

Подумайте, как приложить линейку, чтобы фигура разделилась на:

  1. Два треугольника
  2. Два четырехугольника
  3. Треугольник и четырехугольник
  4. Треугольник и пятиугольник

Увидели, из каких частей состоит фигура? А теперь, наоборот, по частям соберем целое.

( Части фигуры лежат на партах. Дети собирают из них прямоугольник ).

Сделайте вывод по наблюдениям.

Целую фигуру можно разделить на части и из частей составить целую.

Дома на основе треугольников и четырехугольников составляли фигуры, силуэты. Вот какие они получились.

(Демонстрация рисунков, выполненных дома учащимися. Одна из работ анализируется).

Какие фигуры использовал? У тебя получился сложный многоугольник.

Постановка учебной задачи.

На уроке мы должны ответить на вопрос: как найти площадь сложного многоугольника?

Для чего человеку нужно находить площадь?

(Ответы детей и обобщение учителем).

Задача определения площади возникла из практики.

(Показывается план школьного участка).

Для того чтобы построить школу, сначала создали план. Потом разбивалась территория на участки определенной площади, размещались строения, клумбы, стадион. При этом участок имеет определенную форму — форму многоугольника.

Решение учебной задачи.

(Раздаются листы для исследования).

Перед вами фигура. Назовите ее.

Найдем площадь многоугольника. Что для этого надо делать?

Разделить на прямоугольники.

(При затруднении будет другой вопрос: “Из каких фигур состоит многоугольник?”).

Из двух прямоугольников.

С помощью линейки и карандаша разделите фигуру на прямоугольники. Обозначьте цифрами 1 и 2 полученные части.

Найдем площадь первой фигуры.

(Учащиеся предлагают следующие варианты решений и записывают их на доске).

1способ:

  • S1 = 5 ? 2 = 10 см 2
  • S2 = 5 ? 1 = 5 см 2

Зная площадь частей, как найти площадь целой фигуры?

S = 10 + 5 = 15 см 2

2 способ:

  • S1 = 6 ? 2 = 12 см 2
  • S2 = 3 ? 1 = 3 см 2
  • S = 12 + 3 = 15 см 2 .

Сравните результаты и сделайте вывод.

Проследим наши действия

Как находили площадь многоугольника?

Составляется и записывается на плакате алгоритм:?

1. Делим фигуру на части

2. Находим площади частей этих многоугольников ( S1, S2 ).

3. Находим площадь целого многоугольника ( S1 + S 2 ).

( Несколько учащихся проговаривают алгоритм).

Мы нашли два способа, а может, есть еще?

А можно фигуру достроить.

Сколько прямоугольников получилось?

Обозначим части 1 и 2. Проведем измерения.

Найдите площадь каждой части многоугольника.

  • S1=6? 5=30см 2
  • S2= 5 ? 3 = 15 см 2

Как найти площадь нашего шестиугольника?

S = 30 – 15 = 15 см 2

Достроили фигуру до прямоугольника

Сравните два алгоритма. Сделайте вывод. Какие действия одинаковые? Где разошлись наши действия?

Закройте глазки, опустите головки. Мысленно повторите алгоритм.

Мы провели исследовательскую работу, рассмотрели разные способы и теперь можем находить площадь любого многоугольника.

Перед вами многоугольники.

Найти площадь одной фигуры по выбору, при этом можете пользоваться разными способами.

Работа выполняется самостоятельно. Дети выбирают фигуру. Находят площадь одним из способов. Проверка – ключ на доске.

Что можно сказать о форме? ( Форма разная)

А какова площадь этих многоугольников? ( Площади этих многоугольников равны)

У кого правильно – поставь “+”.

У кого сомнения, затруднения – “?”

Консультанты оказывают помощь ребятам, ищут ошибки, помогают исправить.

Составить свои листки исследования, вычислить площадь многоугольника разными способами.

Итак, ребята, что вы расскажите родителям, о том как найти площадь геометрической фигуры – многоугольника.

Измерение площади фигуры с помощью палетки

В школе дети знакомятся с большим количеством измерительных приборов и приспособлений.
Инна СЫЧЕВА, учитель школы № 1936 г. Москвы, показывает, как вычисляется площадь фигуры с помощью одного из таких приспособлений – палетки.

Тема. «Измерение площади фигуры с помощью палетки».

Цели. Научить выполнять приближенное вычисление площадей; познакомить с вычислением площади с помощью палетки по алгоритму; повторить единицы длины и единицы измерения площади; развивать мышление, внимание, память.

Оборудование. Учебник «Математика» (4-й класс, часть 1, авт. М.И. Моро и др.), таблица алгоритма, палетки, индивидуальные карточки, экран, эпидиаскоп, пленки с фигурами.

I. Организационный момент

II. Сообщение темы урока

Учитель. Сегодня на уроке вы научитесь выполнять приближенное вычисление площади и познакомитесь с приспособлением для этого.

III. Знакомство с новым материалом

У. Рассмотрите фигуру на экране.

– Сколько места занимает фигура А на плоскости? Другими словами, какова ее площадь?

Выслушиваются ответы детей.

– Ответ на этот вопрос мы можем дать лишь приблизительно, указав границы, в которых находится площадь фигуры А. Площадь фигуры больше 6 клеток, но меньше 16.

– Как мы будем рассуждать, чтобы вычислить площадь данной фигуры? Внутри фигуры А расположены 6 целых клеток, а остальные 10 клеток входят в нее частично: иногда меньшая часть клеток, а иногда – боRльшая. Поэтому всего в фигуре А содержится примерно.

6 + 10 : 2 = 6 + 5 = 11 ед.

Результат записывают на доске с помощью знака приближенного равенства ».

– Значит, площадь нашей фигуры приблизительно 11 квадратных единиц.

– Читать следует так: «Площадь приблизительно равна 11 квадратным единицам».

Все это мы смогли вычислить благодаря тому, что фигура А была разбита на клетки. Что делать, если таких клеток нет?

Дети. Самим расчертить фигуру на квадраты.

У. Правильно, но на это уйдет много времени. Чтобы ускорить работу, люди придумали приспособление для определения площади фигур.

Учитель раздает детям прозрачные пленки, расчерченные на квадратные сантиметры, и карточки с фигурами.

– Перед вами такое приспособление. Откройте учебники на странице 49 и прочитайте, как оно называется.

Д. Для приблизительного определения площади фигуры используется палетка.

Палетка – прозрачная пленка, разделенная на одинаковые квадраты: это могут быть квадратные дециметры, квадратные сантиметры, квадратные миллиметры.

У. Посмотрите на ваши палетки. Как они разделены?

Д. На квадратные сантиметры.

У. В учебнике на странице 49 на цветные фигуры так же наложена палетка, разделенная на квадратные сантиметры. Прочитайте, как находили площадь фигуры голубого цвета.

Дети читают текст, отмеченный красной чертой.

– Чему равна площадь этой фигуры?

Д. Примерно 31 квадратный сантиметр.

У. Попробуем вывести формулу, по которой приблизительно считается площадь.

Дети вместе с учителем выводят и записывают формулу.

a – целые клетки
b – частичные клетки

– Найдите площадь фигур зеленого и розового цветов.

Д. Площадь зеленой фигуры приблизительно равна 6 + 16 : 2 = 14 квадратных сантиметров.

– Площадь розовой фигуры приблизительно равна 5 + 16 : 2 = 13 квадратных сантиметров.

У. Возьмите в руки карточки с изображенными на них фигурами. С помощью палетки найдите их площадь.

Дети выполняют задание.

– Попробуем вывести алгоритм нахождения площади фигуры с помощью палетки.

Учитель записывает каждый шаг на доске.

1. Наложить палетку на фигуру.
2. Сосчитать число а целых клеток внутри фигуры.
3. Сосчитать число b клеток, входящих в фигуру частично.
4. Сосчитать приближенное значение площади.
S » a + в : 2 (если число b нечетное, то увеличить или уменьшить его на 1).

IV. Физкультминутка

V. Практическая работа

У. Нарисуйте на листе бумаги какую-нибудь замкнутую линию и найдите площадь фигуры, ограниченной этой линией.

Дети выполняют задание в тетради, находят площадь, называют свои ответы.

– Начертите циркулем окружность радиусом 4 сантиметра, найдите с помощью палетки площадь получившегося круга.

Дети находят площадь.

VI. Закрепление пройденного материала

У. Найдите задание 265 на странице 50. Задание выполняем по вариантам: вариант 1 – первая часть номера, вариант 2 – вторая часть.

Дети самостоятельно выполняют задание.

– Поменяйтесь тетрадями и проверьте работу ваших соседей.

Дети делают проверку.

– Вычислите периметр и площадь многоугольника.

Ученики выполняют задание по вариантам: вариант 1 – находят периметр, вариант 2 – находят площадь.

Р = 16 +15 +21 + 9 +7 + 36
Р = 104 дм
S =15 х 16 + 21 х 9
S = 429 дм 2

– Решите логическую задачу. Для каждой фигуры объясните, почему она лишняя.

Д. Сначала уберем фигуру В, так как среди четырехугольников – треугольник. Затем уберем фигуру С, так как останутся фигуры с попарно равными сторонами. Уберем фигуру D, так как в ней углы не прямые.

VII. Самостоятельная работа

У. Выполните упражнения 267 и 262.

Дети выполняют работу и сдают тетради.

VIII. Итог урока

У. С помощью какого инструмента вы научились находить приближенное значение площади фигуры?

Д. С помощью палетки.

У. Какой формулой вы пользовались?

У. Кто из вас научился выполнять приближенное вычисление площади фигуры?

Дети поднимают руки.

IХ. Домашнее задание

Учитель раздает карточки с цифрой 5:

У. Дома вычислите площадь цифры и решите задачи 261 и 263.

как по клеточкам вычислить площадь четырехугольника? (задание из ЕГЭ, фото внутри)

5х (4+6)/2=25 см*2 если не ошибаюсь но также есть ещё теорема о #

Любой четырехугольник можно разбить на треугольники, и его площадь будет равна сумме площадей треугольников.
#

Если в четырехугольник можно вписать окружность, то его площадь равна: S = pr.
#

Площадь выпуклого четырехугольника можно вычислить по формуле: S = \sqrt <(p - a)(p - b)(p - c)(p - d) - abcd\cos ^2 \left( <\frac<<\alpha + \beta >><2>> \right)> , где a,\;b,\;c,\;d — стороны четырехугольника; \alpha ,\;\beta — два его противолежащих угла.

Следствие 1: Если четырехугольник вписан в окружность, то его площадь будет равна: S = \sqrt <(p - a)(p - b)(p - c)(p - d)>.

Следствие 2: Если четырехугольник описан около окружности, то его площадь будет равна: S = \sqrt \sin \left( <\frac<<\alpha + \beta >><2>> \right).
#

Если диагонали выпуклого четырехугольника равны d_1 и d_2 и образуют угол, \alpha то площадь четырехугольника равна: S = \frac<1><2>d_1 d_2 \sin \alpha .

Следствие: Площадь ромба равна: S = \frac<1><2>d_1 d_2.
#

Площадь квадрата: S = a^2 .

5х (4+6)/2=25 см*2 если не ошибаюсь но также есть ещё теорема о #

Любой четырехугольник можно разбить на треугольники, и его площадь будет равна сумме площадей треугольников.
#

Если в четырехугольник можно вписать окружность, то его площадь равна: S = pr.
#

Площадь выпуклого четырехугольника можно вычислить по формуле: S = \sqrt <(p - a)(p - b)(p - c)(p - d) - abcd\cos ^2 \left( <\frac<<\alpha + \beta >><2>> \right)> , где a,\;b,\;c,\;d — стороны четырехугольника; \alpha ,\;\beta — два его противолежащих угла.

Следствие 1: Если четырехугольник вписан в окружность, то его площадь будет равна: S = \sqrt <(p - a)(p - b)(p - c)(p - d)>.

Следствие 2: Если четырехугольник описан около окружности, то его площадь будет равна: S = \sqrt \sin \left( <\frac<<\alpha + \beta >><2>> \right).
#

Если диагонали выпуклого четырехугольника равны d_1 и d_2 и образуют угол, \alpha то площадь четырехугольника равна: S = \frac<1><2>d_1 d_2 \sin \alpha .

Следствие: Площадь ромба равна: S = \frac<1><2>d_1 d_2.
#

Площадь многоугольника

Площадь многоугольника. Друзья! К вашему вниманию пару задачек с многоугольником и вписанной в него окружностью. Существует формула, которой связывается радиус указанной окружности и периметр с площадью такого многоугольника. Вот она:

Как выводится эта формула? Просто!

Имеем многоугольник и вписанную окружность. *Рассмотрим вывод на примере пятиугольника. Разобьём его на треугольники (соединим центр окружности и вершины отрезками). Получается, что у каждого треугольника основание является стороной многоугольника, а высоты образованных треугольников равны радиусу вписанной окружности:

Используя формулу площади треугольника можем записать:

Вынесем общие множители:

Уверен, сам принцип вам понятен.

*При выводе формулы количество сторон взятого многоугольника не имеет значения. В общем виде вывод формулы выглядел бы так:

Известна формула радиуса окружности вписанной в треугольник

Не трудно заметить, что она исходит из полученной нами формулы, посмотрите (a,b,c – это стороны треугольника):

27640. Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

Вычисляем:

Ещё пара задач с многоугольниками.

27930. Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54 0 . Найдите n.

Если угол между радиусом окружности и стороной многоугольника равен 54 0 , то угол между сторонами многоугольника будет равен 108 0 . Тут необходимо вспомнить формулу угла правильного многоугольника:

Остаётся подставить в формулу значение угла и вычислить n:

27595. Периметры двух подобных многоугольников относятся как 2:7. Площадь меньшего многоугольника равна 28. Найдите площадь большего многоугольника.

Здесь нужно вспомнить о том, что если линейные размеры фигуры увеличивается в k раз, то площадь фигуры увеличивается в k 2 раз. *Свойство подобия фигур.

Периметр большего многоугольника больше периметра меньшего в 7/2 раза, значит площадь увеличилась в (7/2) 2 раза. Таким образом, площадь большего многоугольника равна:

27639. Около окружности, радиус которой равен 3, описан многоугольник, площадь которого равна 33. Найдите его периметр.

27641. Около окружности описан многоугольник, площадь которого равна 5. Его периметр равен 10. Найдите радиус этой окружности.

27595. Периметры двух подобных многоугольников относятся как 3:5. Площадь меньшего многоугольника равна 18. Найдите площадь большего многоугольника.

Еще по теме:

  • Федеральный закон об образовании 2013-2014 Стратегия научно-технологического развития России будет подготовлена к осени 2016 года 21 января 2016 г. в Кремле состоялось заседание Совета по науке и образованию при Президенте Российской Федерации. Президент поставил задачу подготовить стратегию научно-технологического развития […]
  • Новые правила по электробезопасности 3 группа Допуск по электробезопасности. Проверка знаний. Допуск по электробезопасности, порядок присвоения группы по электробезопасности осуществляется в соответствии с Правилами технической эксплуатации электроустановок потребителей. Проверка знаний по электробезопасности проводится со 2 группы […]
  • Пособие матери одиночке самара Пособия и выплаты в Самаре в 2017 году Пособие матери-одиночке в Самаре Самарским одиноким матерям выплачиваются следующие виды пособий: на детей одиноких матерей — 400 руб.; на детей одиноких матерей, получающих социальное пособие из областного бюджета, со среднедушевым доходом, […]
  • Закон та модель вальраса МАЭ. №19. Закон Вальраса. Неоклассическая модель общего макроэкономического равновесия Общее эк. равновесие (ОЭР) — такое состояние эк-ки, при котором макроэк-ое равновесие одновременно до­стигается на всех национальных рынках: благ, финансовых активов, труда. При этом оно предполагает […]
  • Саратов вакансия помощник адвоката Саратов вакансия помощник адвоката Саратовский автоцентр КАМАЗ • Саратов Помощник юриста Помощник юриста Судэкс Экспертиза • Саратов Помощник юриста Помощник юриста Юридическое Агентство Навигатор • Саратов Помощник юриста, юрист ЮФ "Правовая помощь" • Саратов Помощник юриста Гросс/год: […]
  • Штраф за козу Какой штраф за браконьерство в 2018 году Браконьером называют человека, нарушающего правила охоты или охотится на животных либо рыбу, которые находятся в Красной книге. Иногда люди «открывают» сезон ловли рыбы или охоты раньше или позже установленных законом сроков. Все это незаконно и […]
  • Пособие для ребенка из детдома Какие пособия положены на усыновленных детей Прежде чем ознакомиться с информацией о том, на какие пособия при усыновлении вы можете рассчитывать, стоит разобраться в том, чем же усыновленный ребенок отличается от приемного. Разница состоит в том, что в первом случае ребенок обретает в […]
  • Да виньола правило пяти ордеров архитектуры Да виньола правило пяти ордеров архитектуры В год победы русских войск под Полтавой и через три года после учреждения в строящемся Санкт-Петербурге Канцелярии от строений в Москве был издан первый русский перевод трактата итальянского архитектора XVI века Джакомо Бароццио да Виньола […]