Патенты двигатели

двигатель внутреннего сгорания

Изобретение относится к двигателестроению и может быть осуществлено при производстве и эксплуатации двигателей с системой впрыска топливовоздушной смеси в рабочий цилиндр двигателя. Рабочий цилиндр с поршнем, форкамера со свечой зажигания и камера сгорания соединены с нагнетателем топливовоздушной смеси в виде компрессорного цилиндра с поршнем. Каналы подачи топлива и воздуха расположены вверху компрессорного цилиндра выше верхней мертвой точки его поршня и снабжены обратными клапанами. Каналы подачи топливовоздушной смеси в камеру сгорания и в форкамеру выполнены в виде трубки, разделенной вдоль ее оси перегородкой, или в виде двух трубок, установленных параллельно друг другу, расположены в полости с охлаждающей жидкостью и снабжены нагревателем. В зоне расположения этих каналов установлен датчик температуры, соединенный с блоком питания нагревателя. Канал подачи топливовоздушной смеси в форкамеру снабжен регулировочным механизмом с приводом, связанным с датчиком числа оборотов коленчатого вала двигателя или с устройством для подачи топлива. Камера сгорания имеет цилиндрическую форму. Проекции осей участков каналов, входящих в камеру сгорания и в форкамеру, на плоскость продольного сечения рабочего цилиндра перпендикулярны его оси. Изобретение обеспечивает повышение стабильности работы двигателя и его мощности, уменьшение расхода топлива путем гомогенизации топливовоздушной смеси. 3 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2278985

Изобретение относится к двигателестроению и может быть осуществлено при производстве и эксплуатации двигателей внутреннего сгорания с системой впрыска топливовоздушной смеси в рабочий цилиндр двигателя.

Известен двигатель внутреннего сгорания (патент РФ №22290029 от 25.11.2002 г., МКИ F 02 B 33/22). Этот двигатель содержит рабочий цилиндр с рабочим поршнем, кинематически связанным с валом двигателя, и изготовленный в едином блоке с рабочим цилиндром компрессорный цилиндр. В компрессорном цилиндре размещена гильза с впускными окнами, сообщенными с впускным каналом. Компрессорный цилиндр сообщен с рабочим цилиндром соединительным каналом через клапан отсечки, размещенный над гильзой соосно компрессорному цилиндру и выполненный в виде стакана с пружиной и седлом, которое образовано верхним торцом гильзы. Внутри гильзы установлен компрессорный поршень, кинематически связанный с рабочим поршнем. Клапан отсечки обращен дном к компрессорному поршню. Кинематическая связь рабочего и компрессорного поршней осуществлена с помощью механизмов, на штоках которых закреплены рабочий и компрессорный поршни. Компрессорный поршень установлен относительно рабочего поршня с возможностью опережения по фазе на 40. 80° поворота вала двигателя. Объем полости гильзы внутри компрессорного цилиндра составляет 5. 30% рабочего объема рабочего цилиндра. Внутри компрессорного цилиндра, в его средней части, выполнена кольцевая выточка, соединенная с впускным каналом. Окна в гильзе расположены по ее окружности против выточки в компрессорном цилиндре. На впускном канале установлено сообщающееся с ним устройство для подачи жидкого или газообразного топлива. В качестве механизмов, с помощью которых осуществлена кинематическая связь рабочего поршня с валом двигателя и с компрессорным поршнем, применены кривошипно-ползунные или бесшатунные механизмы. Свеча установлена соосно рабочему цилиндру. Соединительный канал расположен в верхней части компрессорного цилиндра. Проекция оси соединительного канала на плоскость продольного сечения рабочего и компрессорного цилиндров расположена под углом 20. 60° по отношению к продольной оси рабочего цилиндра. Вершина этого угла направлена в сторону головки рабочего цилиндра. Проекция оси соединительного канала на плоскость поперечного сечения цилиндров расположена под углом 15. 40° к оси поперечного сечения рабочего цилиндра, пресекающейся с продольной осью компрессорного цилиндра.

Под рабочим поршнем в рабочем цилиндре установлена диафрагма, снабженная в центральной части уплотнением, через которое пропущен шток механизма, с помощью которого осуществлена кинематическая связь рабочего поршня с валом двигателя. Наружный контур поверхности диафрагмы выполнен соответствующим внутреннему контуру поверхности рабочего поршня, а выпускной канал расположен выше диафрагмы. Надпоршневое пространство соединено продувочными каналами с подпоршневым пространством. Устройство для подачи жидкого или газообразного топлива выполнено в виде форсунки.

Такая конструкция двигателя позволяет повысить мощность и устойчивость его работы. Однако при работе этого двигателя топливовоздушная смесь, проходя от компрессорного цилиндра через соединительные каналы в камеру сгорания, охлаждается, что может привести к возникновению в составе топливовоздушной смеси капельной фазы. Это нарушит гомогенность смеси и приведет к обеднению паровой фазы, что уменьшит мощность, ухудшит стабильность работы двигателя и повысит расход топлива.

Известен также двигатель внутреннего сгорания, защищенный патентом РФ №2230202 от 08.01. 2003 г., МКИ 7 F 02 B 19/10, который принят за прототип. Двигатель содержит цилиндр с поршнем, нагнетатель топливовоздушной смеси и головку цилиндра, в которой расположена сферическая или коническая камера сгорания и цилиндрическая форкамера. Камера сгорания и форкамера соединены с нагнетателем смеси одним или несколькими каналами. Проекции участков осей каналов, входящих в камеру сгорания и в форкамеру, на плоскость продольного сечения рабочего цилиндра расположены под углами соответственно 90. 20 и 90. 140° по отношению к оси рабочего цилиндра. Входы каналов расположены тангенциально к поверхностям камер. Каналы камеры сгорания направлены навстречу каналам форкамеры. Это позволяет повысить мощность двигателя и снизить токсичность отработанных газов за счет применения бедной топливовоздушной смеси.

Однако при работе двигателя по прототипу топливовоздушная смесь, проходя по каналам от нагнетателя до форкамеры и камеры сгорания, также может охлаждаться, что приведет к образованию в составе топливовоздушной смеси жидкой капельной фазы, обедняя смесь топливом сверх допустимого предела. Кроме того, часть топливовоздушной смеси, скользя по стенкам камеры сгорания под действием вертикальной составляющей центробежных сил, может преждевременно выбрасываться в надпоршневое пространство, обедняя остающуюся в камере сгорания смесь. В результате нарушится стабильность работы двигателя, снизится его мощность и повысится расход топлива.

Технический результат изобретения: повышение стабильности работы двигателя и его мощности и уменьшение расхода топлива путем гомогенизации топливовоздушной смеси.

Сущность изобретения заключается в том, что предлагаемый двигатель содержит рабочий цилиндр с поршнем, кинематически связанным с коленчатым валом, головку цилиндра, в которой расположены камера сгорания и снабженная свечой зажигания форкамера. Камера сгорания и форкамера соединены с нагнетателем топливовоздушной смеси, который выполнен в виде компрессорного цилиндра с поршнем и снабжен устройством для подачи топлива и каналами подачи топлива и воздуха. В отличие от прототипа канал подачи топлива и установленное в нем устройство для подачи топлива, а также канал подачи воздуха расположены в верхней части компрессорного цилиндра выше верхней мертвой точки компрессорного поршня. На выходе каналов подачи воздуха и топлива в компрессорный цилиндр установлены обратные клапаны. Каналы подачи топливовоздушной смеси в рабочий цилиндр выполнены в виде трубки, разделенной вдоль ее оси перегородкой или в виде двух трубок, установленных параллельно друг другу, расположены под крышкой, закрывающей рабочий и компрессорный цилиндры в полости, заполненной охлаждающей жидкостью, и снабжены нагревателем с блоком его питания. В зоне расположения каналов подачи топливовоздушной смеси установлен датчик температуры охлаждающей жидкости, соединенный с блоком питания нагревателя. Камера сгорания имеет цилиндрическую форму. Проекции осей участков каналов, входящих в камеру сгорания и в форкамеру, на плоскость продольного сечения рабочего цилиндра перпендикулярны оси рабочего цилиндра.

Канал подачи топливовоздушной смеси в форкамеру снабжен регулировочным механизмом. Привод этого механизма связан с датчиком числа оборотов коленчатого вала двигателя или с устройством для подачи топлива.

Такая совокупность признаков двигателя в отличие от прототипа обеспечивает возможность подачи топлива в компрессорный цилиндр в пределах от 0 до 360° хода компрессорного поршня, что расширяет возможности регулирования мощность двигателя. Подготовленная в компрессорном цилиндре и нагретая при сжатии топливовоздушная смесь, проходя по каналу в камеру сгорания и форкамеру рабочего цилиндра, не охлаждается. Это исключает образование жидкой фазы в составе топливовоздушной смеси, что повышает устойчивость работы двигателя. Предлагаемая форма камеры сгорания и расположение каналов, входящих в камеру сгорания и в форкамеру, предотвращают возможность преждевременного срыва потока топливовоздушной смеси в надпоршневое пространство рабочего цилиндра, что также повышает устойчивость работы двигателя и уменьшает расход топлива.

Наличие регулировочного механизма в канале подачи топливовоздушной смеси в форкамеру и его связь с датчиком числа оборотов или с устройством для подачи топлива позволяет изменять количество смеси, подаваемой в форкамеру в зависимости от количества топлива в топливовоздушной смеси. Это при увеличении мощности двигателя позволит уменьшать количество богатой топливовоздушной смеси в форкамере и предупредит возможность избытка топлива в зоне электродов свечи зажигания. В результате повысится устойчивость работы двигателя при большой его мощности.

Изобретение иллюстрируется чертежами, где на фиг.1 показана конструктивная схема предлагаемого двигателя, на фиг.2 — разрез по А-А на фиг.1, на фиг.3 — разрез по В-В на фиг.2, а на фиг 4 — разрез по С-С на фиг 1.

Предлагаемый двигатель содержит рабочий цилиндр 1 с рабочим поршнем 2, который через шток 3 кинематически связан с коленчатым валом. В головке 4 рабочего цилиндра 1 расположены камера сгорания 5, имеющая цилиндрическую форму, и форкамера 6, снабженная свечой зажигания 7. Камера сгорания 5 и форкамера 6 соединены с нагнетателем топливовоздушной смеси каналами 9, 10, 22, а также каналами 39 и 38, расположенными в трубке 26, разделенной перегородкой 25, через обратные клапаны 23, установленные в корпусе 24. Каналы 39 и 38 могут быть выполнены также в виде отдельных трубок, установленных параллельно друг другу. Такое выполнение каналов 39 и 38 может оказаться целесообразным при изготовлении двигателя небольшой мощности, когда перегородку 25 трудно выполнить в трубке малого диаметра.

Нагнетатель топливовоздушной смеси выполнен в виде компрессорного цилиндра 17 с поршнем 19 и штоком 32, кинематически связанным со штоком 3 рабочего цилиндра 1. В крышке 33 компрессорного цилиндра 17 установлен клапан отсечки 21 с пружиной 20, прижатой к крышке 33 пластиной 18. Кроме того, в крышке 33 выполнен канал 14 для подачи топлива и один или несколько каналов 15 для подачи воздуха, которые через каналы 13 и 11, выполненные соответственно в корпусе 17 компрессорного цилиндра и в корпусе двигателя 16, соединены с атмосферой. На входе канала 14 установлено устройство 12 для подачи топлива, в качестве которого может быть использована форсунка.

Размещение каналов 14 и 15 в крышке 33 предопределяет выход этих каналов в полость 8 компрессорного цилиндра 17 выше верхней мертвой точки компрессорного поршня 19. На выходах каналов 15 в полость 8 компрессорного цилиндра 17 установлены обратные клапаны 34, которые могут быть, например, лепестковыми и могут крепиться к торцу компрессорного цилиндра 17 винтами 35.

Трубка 26, содержащая каналы 39 и 38 подачи топливовоздушной смеси в камеру сгорания 5 и форкамеру 6, расположена в полости, заполненной охлаждающей жидкостью под крышкой 31, закрывающей рабочий 1 и компрессорный 17 цилиндры и закрепленной на корпусе 16 двигателя. Трубка 26 снабжена нагревателем 27 (например, электрическим), который соединен с блоком 30 его питания проводами 29. В зоне расположения трубки 26 с каналами 39 и 38 установлен датчик 28 температуры охлаждающей жидкости, соединенный с блоком 30 питания нагревателя 27.

Проекции участков осей каналов 9 и 10, входящих соответственно в форкамеру 6 и в камеру сгорания 5, на плоскость продольного сечения рабочего цилиндра 1 расположены перпендикулярно оси рабочего цилиндра 1 (углы а=b=90°).

Канал 38 подачи топливовоздушной смеси в форкамеру 6 снабжен регулировочным механизмом 36. Привод 37 механизма 36 связан с датчиком числа оборотов коленчатого вала двигателя или с устройством 12 для подачи топлива.

Размещение канала 14 с устройством 12 для подачи топлива и каналов 15 для подачи воздуха в крышке 33 предопределяет выход этих каналов в полость 8 компрессорного цилиндра 17 в верхней части этой полости выше верхней мертвой точки (ВМТ) компрессорного поршня 19. Это в отличие от прототипа увеличивает время, в течение которого возможна подача топлива в полость 8 компрессорного цилиндра 17. Подача топлива может быть осуществлена в любой фазе движения поршня 19 компрессорного цилиндра 17 от 0 до 360°. Это исключает возможность преждевременного прекращения подачи топлива при открытом устройстве 12 (например, форсунке) вследствие перекрытия канала 14 поршнем 19 при его движении к ВМТ, как это могло происходить в двигателе по прототипу, что ограничивало возможность увеличения мощности двигателя. В предлагаемом двигателе расположение канала 14 выше ВМТ компрессорного поршня 19 позволяет производить впрыск топлива в полость 8 компрессорного цилиндра 17 при любом положении поршня 19. В результате расширяется возможность увеличения мощности двигателя.

Расположение каналов 15 подачи воздуха в крышке 33 компрессорного цилиндра 17 увеличивает наполнение полости 8 компрессорного цилиндра 17 воздухом, поскольку при этом подача воздуха обеспечивается в течение всего времени движения компрессорного поршня от ВМТ к нижней мертвой точке (НМТ). При обратном ходе поршня 19 от НМТ к ВМТ выходы каналов 15 перекрываются клапанами 34, происходит сжатие топливовоздушной смеси. При ходе поршня 19 от ВМТ к НМТ над поршнем 19 создается разрежение, клапаны 34 открываются и через каналы 15, 13 и 11 из атмосферы в полость 8 засасывается чистый воздух в течение времени, соответствующего 180° хода поршня 19. Одновременно с началом подачи воздуха в полость 8 компрессорного цилиндра 17 через канал 14 с помощью устройства 12 начинает впрыскиваться топливо. Это обеспечивает более полное перемешивание топлива с воздухом, которое начинается до начала сжатия топливовоздушной смеси. В результате обеспечивается повышение качества топливовоздушной смеси, которая становится более однородной. Повышается стабильность работы двигателя, снижается непроизводительный расход топлива и увеличивается мощность двигателя вследствие более полного последующего сгорания топливовоздушной смеси в рабочем цилиндре 1 предлагаемого двигателя.

При ходе компрессорного поршня 19 от НМТ к ВМТ топливо воздушная смесь сжимается, вследствие чего она нагревается до 300. 400°. Топливо испаряется, что обеспечивает однофазный газовый состав всей топливовоздушной смеси. Однако в двигателе по прототипу при выходе из компрессорного цилиндра 17 сжатая топливовоздушная смесь, поступая через каналы 39 и 38 в камеру сгорания 5 и форкамеру 6, охлаждается и ее температура снижается. Кроме того, впрыск топливовоздушной смеси в камеру сгорания 5 и в форкамеру 6 должен производиться при давлении в рабочем цилиндре 1, равном или меньшем давления в компрессорном цилиндре 17. В последнем случае в каналах 38, 39, 22, 9, 10, в камере сгорания 5 и в форкамере 6 произойдет расширение топливовоздушной смеси, что также приведет к уменьшению ее температуры. В результате часть топлива в составе топливовоздушной смеси конденсируется, выделившись в виде жидкой капельной фазы. Это резко нарушит стабильность работы двигателя, понизит его мощность и увеличит расход топлива — станут возможными пропуски поджигания топливовоздушной смеси. Этот недостаток в предлагаемой конструкции двигателя устранен тем, что каналы 39 и 38 выполнены в виде трубки 26, разделенной перегородкой 25. Трубка 26 снабжена нагревателем 27 и расположена в полости, заполненной охлаждающей жидкостью под крышкой 31, закрывающей рабочий 1 и компрессорный 17 цилиндры. Топливовоздушная смесь, проходя через каналы 39 и 38, нагревается с помощью нагревателя 27 до температуры, несколько превышающей температуру испарения топлива. Это предупреждает конденсацию топлива в камере сгорания 5 и в форкамере 6. Одновременно с топливовоздушной смесью от нагревателя 27 нагревается окружающая трубку 26 охлаждающая жидкость. Поэтому датчик 28, измеряющий температуру охлаждающей жидкости, установлен в зоне расположения трубки 26 с каналами 39 и 38. Датчик 28 подает команду на блок питания 30 нагревателя 27, который в соответствии с этой командой регулирует мощность, подаваемую на нагреватель 27. В начале работы двигателя, когда охлаждающая жидкость еще не нагрелась от выделяемого двигателем тепла, мощность, отдаваемая блоком питания 30 нагревателю 27, максимальна, затем, по мере нагрева охлаждающей жидкости, мощность уменьшается. В результате в камеру сгорания 5 и в форкамеру 6 в течение всего времени работы двигателя поступает топливовоздушная смесь, температура которой несколько выше температуры испарения топлива. Это исключает возможность конденсации топлива в составе топливовоздушной смеси, что также повысит стабильность работы двигателя, увеличит его мощность и снизит расход топлива. При этом уменьшится токсичность отработанных газов: в их составе не будет частиц несгоревшего топлива.

Придание камере сгорания 5 цилиндрической формы позволяет полнее удерживать в пределах ее объема закрученный поток топливовоздушной смеси, поступающий из тангенциально расположенного канала 10. При сферической или конической форме камеры сгорания 6, предусмотренной прототипом, возникает вертикальная составляющая центробежной силы, действующей на тангенциально закрученный поток топливовоздушной смеси. Вертикальная составляющая стремится выбросить часть потока топливовоздушной смеси из камеры сгорания 5 в рабочий цилиндр 1. Это приводит к чрезмерному обеднению топливовоздушной смеси, что вызывает пропуски ее поджигания. Снижается стабильность работы двигателя, уменьшается его мощность, увеличивается расход топлива. Принятая в предлагаемом двигателе цилиндрическая форма камеры сгорания 5 устраняет этот недостаток, поскольку в этом случае вертикальная составляющая центробежной силы практически отсутствует.

Расположение проекций осей участков каналов 9 и 10, входящих соответственно в форкамеру 6 и в камеру сгорания 5, на плоскость продольного сечения рабочего цилиндра 1 перпендикулярно оси рабочего цилиндра 1 также способствует уменьшению возможности срыва потока топливовоздушной смеси из форкамеры 6 и камеры сгорания 5 в рабочий цилиндр 1. При любом другом значении величины углов а и b, отличном от 90°, возникнут искажения формы закрученных потоков топливовоздушной смеси, что приведет к увеличению вертикальных составляющих центробежных сил, повысит вероятность срыва потока топливовоздушной смеси и, следовательно, понизит стабильность работы двигателя и его мощность, увеличит непроизводительный расход топлива. Расположение каналов 9 и 10, при котором а=b=90°, устраняет этот недостаток.

Наличие регулировочного механизма 36 с приводом 37 позволяет изменять величину проходного сечения канала 38 подачи топливовоздушной смеси в форкамеру 6. Связь привода 37 механизма 36с датчиком числа оборотов коленчатого вала двигателя или с устройством 12 для подачи топлива позволяет уменьшать или увеличивать проходное сечение канала 38 в зависимости от длительности импульса подачи топлива устройством 12 или от числа оборотов коленчатого вала двигателя. Это позволит регулировать количество топливовоздушной смеси, подаваемой через канал 38 в форкамеру 6. При необходимости увеличить мощность двигателя увеличивают длительность импульса подачи топлива устройством 12. Топливовоздушная смесь становится богаче. Подача богатой смеси в форкамеру 6 может вызвать избыток топлива в зоне электродов свечи зажигания 7. Это приведет к нарушению стабильности работы двигателя: чрезмерно богатая смесь в ядре вихря может не загораться, на электродах свечи 7 может осаживаться жидкое топливо.

Уменьшение проходного сечения канала 38 с помощью механизма 36 уменьшит количество топливовоздушной смеси в форкамере 6, что обеднит ее в объеме форкамеры. Это исключит возможность пропусков поджигания топливовоздушной смеси и повысит стабильность работы двигателя.

Предлагаемый двигатель работает следующим образом.

После начала движения компрессорного поршня 19 от ВМТ через устройство 12 и канал 14 в полость 8 компрессорного цилиндра 17 подают топливо. При движении поршня 19 вниз над ним создастся разряжение, клапаны 34 под действием разности давлений откроются и в полость 8 поступит через каналы 11, 13 и 15 чистый воздух из атмосферы. Внутри полости 8 образуется топливовоздушная смесь, которая в результате движения поршня 19 к НМТ интенсивно перемешивается. После достижения НМТ компрессорный поршень 19 начнет движение вверх к ВМТ, поскольку через штоки 32 и 3 он кинематически связан с рабочим поршнем 2. Начнется сжатие топливовоздушной смеси. При достижении в полости 8 компрессорного цилиндра 17 давления, на которое тарирована пружина 20, клапан отсечки 21 поднимется вверх и откроет вход в каналы 38 и 39. Топливовоздушная смесь, проходя через каналы 38 и 39, расположенные внутри трубки 26, подогревается нагревателем 27. Температура подогрева контролируется датчиком 28, который измеряет температуру охлаждающей двигатель жидкости в зоне расположения трубки 26 и подает команду на блок питания 30, который регулирует мощность, потребляемую нагревателем 27. Это обеспечивает возможность поддержания температуры топливовоздушной смеси несколько большей, чем температура испарения топлива, компенсируя дополнительным нагревом охлаждение топливовоздушной смеси.

Через каналы 38 и 39, лепестковые обратные клапаны 23, каналы 22, 9 и 10 топливовоздушная смесь впрыскивается в форкамеру 6 и в камеру сгорания 5 рабочего цилиндра 1. Каналы 9 и 10 расположены тангенциально внутренней цилиндрической поверхности соответственно форкамеры 6 и камеры сгорания 5. Вследствие этого струя топливовоздушной смеси в форкамере 6 завихряется и пары топлива концентрируются в середине верхней части форкамеры 6, в зоне электродов свечи зажигания 7. Происходит расслоение смеси, смесь в этой зоне становится богатой. Топливовоздушная смесь, поступающая из канала 10 в камеру сгорания 5, завихряясь, создает завесу, препятствующую рассредоточению топливовоздушной смеси, впрыснутой в камеру сгорания 6.

Поскольку каналы 9 и 10 расположены так, что проекции их осей на плоскость продольного сечения рабочего цилиндра 1 перпендикулярны его оси, а камера сгорания выполнена цилиндрической, возможность срыва потока топливовоздушной смеси в рабочий цилиндр 1 минимальна.

После подачи напряжения на электрод свечи 7 богатое топливом ядро топливовоздушной смеси в форкамере 6 воспламенится и подожжет относительно бедную смесь в камере сгорания 5. Начнется рабочий ход поршня 2. Топливовоздушная смесь при этом будет сгорать практически полностью. Это позволит стабилизировать работу двигателя, увеличить его мощность, а также сократить расход топлива и уменьшить токсичность выхлопных газов.

При необходимости повысить мощность двигателя увеличится длительность импульса подачи топлива устройством 12. Топливовоздушная смесь в полости 8 компрессорного цилиндра 17 обогатится. Сигнал об увеличении длительности импульса поступит на привод 37 регулировочного механизма 36, который уменьшит проходное сечение канала 38. Это уменьшит количество богатой топливовоздушной смеси, поступающей в форкамеру 6, что повысит стабильность работы двигателя, исключив возможность пропусков поджигания смеси в форкамере 6. При увеличении импульса подачи топлива и обогащении топливовоздушной смеси пропорционально увеличится число оборотов коленчатого вала двигателя. Поэтому с тем же результатом для осуществления обратной связи между длительностью импульса подачи топлива и количеством топливовоздушной смеси, поступающей в форкамеру 6, может быть использован сигнал от датчика числа оборотов коленчатого вала двигателя.

Все детали предлагаемого двигателя легко изготовить из известных и применяющихся в двигателестроении материалов с помощью известного литейного и металлорежущего оборудования. Трубку 26, содержащую каналы 38 и 39, разделенные перегородкой 25, можно изготовить из стальной, алюминиевой или медной трубы. В качестве нагревателя 27 можно использовать любой известный нагреватель, например, навить на трубку 26 спираль из нихрома, а в качестве блока питания 30 использовать источник электрического тока с реостатом, снабженным электромеханическим приводом, изменяющим в зависимости от сигнала датчика 28 напряжение, подаваемое на спираль нагревателя 27. Датчиком 28 может служить, например, термопара или тарированная на заданную температуру биметаллическая пластина с контактом.

Регулировочный механизм 26 может быть выполнен, например, в виде винта, как это показано на фиг.1, или штока. Входя в канал 38 через отверстие с уплотнителем, выполненное в стенке трубки 26, винт (или шток) будет изменять проходное сечение этого канала, которое будет зависеть от высоты поднятия этого винта или штока приводом 37. Привод 37 регулировочного механизма 36 может быть, например, электромеханическим, поворачивающим винт или электромагнитным, поднимающим шток механизма 36. Такие механизмы и приводы широко известны и применяются в технике.

Таким образом, предлагаемый двигатель обеспечивает технический эффект, заключающийся в повышении стабильности работы, увеличении мощности двигателя и уменьшении расхода топлива, а также снижении токсичности отработанных газов путем гомогенизации топливовоздушной смеси. Двигатель может быть изготовлен с помощью известных в технике средств и материалов. Следовательно, предлагаемый двигатель обладает промышленной применимостью.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Двигатель внутреннего сгорания, содержащий рабочий цилиндр с поршнем, кинематически связанным с коленчатым валом, головку цилиндра со снабженной свечой зажигания форкамерой и камерой сгорания, которые через обратные клапаны соединены каналами с нагнетателем топливовоздушной смеси, выполненным в виде компрессорного цилиндра с поршнем и снабженного устройством для подачи топлива и каналами подачи топлива и воздуха, отличающийся тем, что канал подачи топлива и установленное в нем устройство для подачи топлива, а также каналы подачи воздуха расположены в верхней части компрессорного цилиндра выше верхней мертвой точки компрессорного поршня, а на выходе каналов подачи воздуха в компрессорный цилиндр установлены обратные клапаны.

2. Двигатель по п.1, отличающийся тем, что каналы подачи топливовоздушной смеси в рабочий цилиндр выполнены в виде трубки, разделенной вдоль ее оси перегородкой или в виде двух трубок, установленных параллельно друг другу, расположены в полости крышки, закрывающей рабочий и компрессорный цилиндры, заполненной охлаждающей жидкостью, и снабжены нагревателем и блоком его питания, а в зоне расположения каналов подачи топливовоздушной смеси установлен датчик температуры охлаждающей жидкости, который соединен с блоком питания нагревателя.

3. Двигатель по п.1, отличающийся тем, что камера сгорания имеет цилиндрическую форму, а проекции осей участков каналов, входящих в камеру сгорания и в форкамеру, на плоскость продольного сечения рабочего цилиндра перпендикулярны оси рабочего цилиндра.

4. Двигатель по любому из пп.1-3, отличающийся тем, что канал подачи топливовоздушной смеси в форкамеру снабжен регулировочным механизмом с приводом, который связан с устройством для подачи топлива или с датчиком числа оборотов коленчатого вала двигателя.

поршневой двигатель внутреннего сгорания

Использование: поршневые двигатели внутреннего сгорания. Сущность изобретения: двигатель может иметь различное число цилиндров, расположенных по окружности в дискообразном блоке цилиндров и параллельных осей рабочего вала, находящегося в центре блока цилиндров и снабженного основным и вспомогательным дисками. Горючая смесь приготавливается вне цилиндров /в карбюраторе/ и воспламеняется от высокой температуры, полученной в результате большой степени сжатия этой смеси в цилиндрах. Рабочий цикл двигателя протекает за четыре такта /впуск, сжатие, рабочий ход, выпуск/. На такте рабочего хода образовавшиеся в результате детонации топливно-воздушной смеси газы перемещают поршни в цилиндрах, возвратно-поступательное движение которых при помощи основного и вспомогательного дисков, снабженных укосами, преобразуется во вращательное движение рабочего вала. Двигатель состоит из возвратно-поступательного и газорапределительного механизмов, систем охлаждения, смазки, питания и регулятора степени сжатия, обеспечивающего воспламенение различных видов топливовоздушной смеси от сжатия без системы зажигания и топливной аппаратуры. 1 з.п. ф-лы, 8 ил.

Рисунки к патенту РФ 2095597

Изобретение относится к двигателестроению, в частности к поршневым двигателям внутреннего сгорания.

За прототип предложенного двигателя принят поршневой двигатель внутреннего сгорания известный по заявке ФРГ N 2500608, кл. F 02 B 75/26 1976 г.

Признаками, характеризующими прототип, являются:
1. Двигатель содержит блок цилиндров.

2. Головку блока.

4. Запальные свечи.

5. Камеры сгорания.

6. Устройство для приготовления топливно-воздушной смеси.

7. Главный и приводной валы с основным м вспомогательным дисками.

8. Дискообразная форма блока цилиндров.

9. Регулятор степени сжатия, содержащий
9a. Резьбовую втулку осевого перемещения главного вала.

9б. Главный вал с основным диском.

Принятый за прототип двигатель обладает следующими недостатками:
1. Сложность конструкции.

2. Необходимость использования строго определенных видов жидкого топлива.

3. Низкие КПД и мощность двигателя.

Система зажигания усложняет конструкцию двигателя и снижает его возможности. При попадании воды в систему зажигания ДВС перестает работать. Для работы карбюраторных двигателей, имеющих систему зажигания, используются только легкие фракции нефти.

Регулятор степени сжатия принятого за прототип двигателя может эффективно изменять степень сжатия только в очень узких пределах, так как степень сжатия изменяется за счет изменения объемов камер сгорания в цилиндрах ДВС. По этой причине регулятор такого типа нельзя использовать для воспламенения различных видов топливно-воздушной смеси без системы зажигания.

Взятый за прототип двигатель по вышеуказанным причинам для своей работы может использовать только легкие фракции нефти с различными октановыми числами.

Целью изобретения является устранение выше указанных недостатков, то есть создание поршневого двигателя упрощенной конструкции, без системы зажигания с воспламенением горючей смеси /приготавливаемой вне цилиндров/ от ее сжатия, работающего на всех видах жидкого топлива, применяемого в настоящее время для работы дизельных, карбюраторных и газовых поршневых двигателей, обладающего более высокими КПД и мощностью. Эта цель достигается тем, что в известном двигателе по заявке ФРГ N 2500608, кл. F 02 B 75/26, 1976 регулятор степени сжатия заменяется на регулятор степени сжатия, обеспечивающий управляемый процесс детонации различных видов топливно-воздушной смеси без системы зажигания, выполненный в виде перепускных каналов, сообщенных с цилиндрами, перепускных золотников, установленных с возможностью перекрытия перепускных каналов и штоков, связанных через резьбовые соединения с перепускными золотниками, а через шлицевые соединения с шестернями корректировки степени сжатия, причем, последние входят в зацепление с коронной шестерней, приводимой в действие червячным винтом.

Кроме того, поршни двигателя получают дополнительную кинематическую связь с укосами вспомогательного диска, клапаны дополнительно кинематически связываются с укосами основного диска, а штоки перепускных золотников кинематически связываются с укосами основного и вспомогательного дисков.

Использование детонации для работы ДВС позволит:
а/ воспламенять различные виды топливно-воздушной смеси в цилиндрах двигателя без системы зажигания и топливной аппаратуры;
б/ увеличить КПД и мощность двигателя за счет использования при детонации обедненной топливно-воздушной смеси, а также уменьшения тепловых потерь на тактах рабочего хода.

Признаками, характеризующими предложенный двигатель внутреннего сгорания, являются:
1. Двигатель содержит блок цилиндров.

2. Головку блока.

4. Отсутствует система зажигания, воспламенение топливно-воздушной смеси от сжатия в цилиндрах.

5. Камеры сгорания.

6. Устройство для приготовления топливно-воздушной смеси.

7. Рабочий вал с основным и вспомогательным дисками.

8. Дискообразная форма блока цилиндров.

9. Регулятор степени сжатия, содержащий:
9a. Перепускные каналы сообщенные с цилиндрами.

9б. Перепускные золотники.

9в. Штоки перепускных золотников.

9г. Шестерни корректировки степени сжатия.

9д. Коронная шестерня.

9е. Червячный винт.

Признаки 1, 2, 3, 5, 6, 7, 8, 9 являются общими с признаками прототипа.

Признаки 4, 9а, 9б, 9в, 9г, 9д, 9е являются новыми отличительными, а также существенными, так как использование именно этих признаков позволяет достичь поставленную цель.

На фиг. 1 изображен продольный разрез двигателя; на фиг. 2 разрез по А-А фиг. 1; на фиг. 3 кинематическая схема двигателя; на фиг. 4 такт впуска; на фиг. 5 такт сжатия; на фиг. 6 такт рабочего хода; на фиг. 7 — продувка цилиндра; на фиг. 8 регулятор степени сжатия.

Двигатель состоит из возвратно-поступательного и газораспределительного механизмов, систем охлаждения, смазки, питания и регулятора степени сжатия в цилиндрах.

Возвратно-поступательный механизм предназначен для преобразования возвратно-поступательного движения поршней во вращательное движение рабочего вала. Он состоит из подвижных и неподвижных деталей. К неподвижным деталям — поршни 2, поршневые кольца 3, штоки поршней 4, шаровые толкатели поршней 5, а также рабочий вал 6 с основным 7 и вспомогательным 8 дисками.

Блок цилиндров 1 является остовом двигателя. На нем и внутри него размещаются механизмы и устройства двигателя. Он представляет собой расположенную по окружности группу цилиндров 9 /фиг. 2/ боковые стороны которых параллельны оси рабочего вала 6. В центре блока цилиндров /фиг. 1/ находятся опоры для подшипников 10 рабочего вала двигателя.

Штоки поршней 4 с шаровыми толкателями поршней 5 служат для соединения поршней 2 с дисками рабочего вала и передачи между ними. Рабочий вал 6 воспринимает усилия с основного 7 и вспомогательного 8 дисков и передает создаваемый на нем крутящий момент трансмиссии транспортного средства. От него также приводятся в действие различные механизмы двигателя /газораспределительный механизм, масляный насос, водяной насос и т.д./.

Газораспределительный механизм служит для впуска в цилиндры двигателя горючей смеси и выпуска из цилиндров отработанных газов. Газораспределительный механизм /фиг. 3/ включает в себя рабочий вал 6 с основным 7 и вспомогательным 8 дисками, впускные 11 и выпускные 12 золотниковые клапаны, штоки золотников 13, шаровые толкатели золотников 14.

Рабочий вал 6 с основным 7 и вспомогательным 8 дисками обеспечивают своевременное открытие и закрытие клапанов.

Система зажигания в существующих поршневых ДВС, служит для воспламенения рабочей смеси в цилиндрах в соответствии с порядком и режимом работы двигателя. В предлагаемом двигателе функцию системы зажигания выполняет регулятор степени сжатия топливно-воздушной смеси в цилиндрах /фиг. 8/. Он включает в себя: главные перепускные золотники 15, штоки главных перепускных золотников 16, шаровые толкатели главных перепускных золотников 17, шестерни корректировки степени сжатия 19, коронную шестерню 20, червячный винт 21.

Предлагаемый двигатель работает следующим образом: производится запуск двигателя при помощи стартера вращающего через зубчатый венец 22 /расположенный на вспомогательном диске 8/, рабочий вал двигателя 6 по часовой стрелке /фиг. 1, 3/. Укос 23 вспомогательного диска 8 набегает на шаровой толкатель 5, который через шток 4 начинает передвигать поршень 2 от верхней мертвой точки к нижней мертвой точке. В этот момент все каналы закрыты кроме впускного канала 26 /фиг. 1, 4/. Топливно-воздушная смесь из карбюратора /фиг. 1/ через всасывающий коллектор 25 и канал 26 в блоке цилиндров 1, поступает в цилиндр двигателя наполняя его.

С началом движения поршня 2 в сторону нижней мертвой точки, шаровый толкатель 17, через шток 16, воздействуя на главный перепускной золотник 15, постепенно открывает перепускной канал 27 и к концу такта «впуск» полностью открывает его.

При сжатии смеси /фиг. 3, 5/ укос 28 основного диска 7, набегает на шаровый толкатель 5, который через шток 4 передвигает поршень 2 от нижней мертвой точки к верхней мертвой точке. Укос 29 вспомогательного диска 8, воздействуя на шаровый толкатель 14, через шток 13, открывает выход перепускного канала 27, закрыв при этом впускной 26 и выпускной 30 каналы. Одновременно с движением поршня 2 от нижней мертвой точки к верхней мертвой точке, укос 31 основного диска 7, воздействуя на шаровый толкатель 17 и шток 16, начинает перемещать главный перепускной золотник 15, постепенно перекрывая вход перепускного канала 27 до его полного закрытия.

Для каждого вида применяемой топливно-воздушной смеси регулятором устанавливается своя степень сжатия, при которой на такте «рабочий ход» в верхней мертвой точке происходит детонация горючей смеси и газы, образовавшиеся в цилиндре /в результате детонации топлива/, фиг. 1, 3, через поршень 2, шток 4 и толкатель 5, воздействуя на укос 32 основного диска 7, повернут рабочий вал двигателя в нужном направлении.

В конце такта «рабочий ход» /фиг. 1, 3, 6, 7/ укос 33 вспомогательного диска 8 через толкатель 14 и шток 13 закрывает золотником 11 впускной 26 и золотником 18 перепускной 27 каналы, открыв при этом выпускной канал 30. В этот момент перепускной канал 27 также закрыт золотником 15. Отработанные газы через выпускной канал 30 попадают в выхлопной коллектор 34, после чего начинается продувка цилиндра. По окончанию продувки весь процесс повторяется заново в той же последовательности.

Для плавности работы ДВС между торцами поршневых штоков и шаровыми толкателями необходимо поставить демпферные пружины, которые будут гасить резкие импульсные толчки газов передаваемые через поршни и их штоки толкателям, воздействующим на укосы основного и вспомогательного дисков. Правильно выбранные формы укосов основного и вспомогательного дисков, а также величины диаметров дисков будут играть значительную роль в работе двигателя. Укос основного диска, действующий на шаровый толкатель поршня на такте сжатия должен быть пологим. Укос этого же диска, кинематически связанный с шаровым толкателем поршня, на такте рабочего хода в верхней части укоса должен быть крутым, а со средней части пологим, принимающим дугообразно вогнутый вид.

Предназначение, цель и принцип действия регулятора степени сжатия /фиг. 8/
Регулятор степени сжатия предназначен для изменения степени сжатия рабочей смеси в цилиндрах двигателя в широких пределах с целью создания управляемого процесса детонации горючей смеси в цилиндрах этого двигателя.

Исходя из того, что изменение величины степени сжатия в цилиндре предложенного двигателя зависит от размера поперечного сечения канала 27 и продолжительности его открытия, а также того, что ход штока 16 и размер поперечного сечения перепускного канала 27 величины постоянные, очевидно, что продолжительность закрытия перепускного канала 27 и изменение размера его поперечного сечения полностью зависят от места расположения главного перепускного золотника 15 на оси штока 16. Изменение степени сжатия в цилиндрах будет осуществляться следующим образом: вращение червячного винта 21, через коронную шестерню 20 и шестерни корректировки 19, через шлицевую часть 35, приведет во вращение штоки 16, соединенные резьбовыми частями 36, 37 с главными перепускными золотниками 15. Главный перепускной золотник 15 по наружному краю снабжен шлицами 38, исключающими возможность его вращения в гильзе 39. Вращение штоков 16 вызовет перемещение золотников 15 относительно осей этих штоков. При максимальной степени сжатия перепускной канал 27 будет постоянно закрыт главным перепускным золотником 15, путем его перемещения по штоку 16 в крайнее положение по направлению в сторону верхней мертвой точки поршня 2. При минимальной степени сжатия, главный перепускной золотник 15 будет смещен по штоку 16 в крайнее положение по направлению в сторону нижней мертвой точки поршня 2.

Таким образом, в зависимости от необходимой для воспламенения степени сжатия топливно-воздушной смеси в цилиндрах двигателя, главный перепускной золотник 15 может начинать свое движение с любой точки поперечного сечения перепускного канала 27, тем самым изменяя размер сечения перепускного канала 27 и время его полного переключателя.

Использование детонации для работы ДВС, позволит снизить тепловые потери двигателя, благодаря огромной скорости распространения пламени, приводящей к сокращению времени контакта раскаленных газов с гильзами цилиндров и уменьшению площади теплоотдачи в момент максимальной температуры газов в цилиндрах двигателя.

Предложение использовать в поршневых двигателях с блоком цилиндров дискообразной формы и рабочим валом, снабженным основным и вспомогательным дисками, регулятор степени сжатия, обеспечивающий детонацию различных видов топливно-воздушной смеси /приготавливаемой вне цилиндров/ без системы зажигания позволит упростить конструкцию двигателя, повысить его КПД и мощность, а также применять различные виды топлива /бензин, керосин, газ, дизтопливо и т.д./.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Поршневой двигатель внутреннего сгорания, предназначенный для преобразования тепловой энергии в механическую, содержащий блок цилиндров, головку блока цилиндров, поршни, впускные и выпускные клапаны, устройство для приготовления топливно-воздушной смеси, круглый рабочий вал с основным и вспомогательным дисками, имеющими укосы и регулятор степени сжатия, причем блок цилиндров выполнен в виде диска, в центре которого размещены опоры подшипников рабочего вала, группа цилиндров расположена по окружности и параллельна оси рабочего вала, поршни кинематически связаны с укосами основного диска, а клапаны с укосами вспомогательного диска, отличающийся тем, что регулятор степени сжатия обеспечивает воспламенение различных видов топливно-воздушной смеси от сжатия без системы зажигания и выполнен в виде перепускных каналов, сообщенных с цилиндрами, перепускных золотников, установленных с возможностью перекрытия перепускных каналов и штоков, связанных через резьбовые соединения с перепускными золотниками, а через шлицевые соединения с шестернями корректировки степени сжатия, причем последние входят в зацепление с коронной шестерней, приводимой в действие червячным винтом.

2. Двигатель по п.1, отличающийся тем, что поршни имеют дополнительную кинематическую связь с укосами вспомогательного диска, клапаны имеют дополнительную кинематическую связь с укосами основного диска, а штоки перепускных золотников кинематически связаны с укосами основного и вспомогательного дисков.

Еще по теме:

  • Помощь при купле продаже автомобиля Помощь в покупке авто Профессиональная помощь в покупке бу авто Приобретение подержанной машины в Москве, с ее огромным автомобильным рынком, – задача непростая. Проблемы могут возникнуть на любом этапе процесса, начиная с поиска подходящей модели и оценки ее тех. состояния, и заканчивая […]
  • Претензия для дилеров Претензия в автосалон, дилеру - пример, образец. В ООО «____________» ИНН _______________ Адрес:__________________________________ От гр________Ф.И.О.______, проживающего по адресу:_________________тел._____________ Претензия продавцу (в автосалон, дилеру - пример, образец) __________ […]
  • Оплата административного штрафа физическим лицом Физическое лицо (работник организации) привлечено к административной ответственности в виде штрафа. Допускается ли уплата административного штрафа с расчетного счета организации от имени работника? Если да, то можно ли в дальнейшем удержать у него сумму штрафа из заработной […]
  • Что делать если лишили прав на 15 года Что делать, если на полтора года лишили прав? С осени 2013 года принят закон о том, что пересдавать теорию ПДД должны будут все автомобилисты, которые были лишены прав. Только в случае успешной пересдачи права можно будет вернуть, даже при условии, что штраф был оплачен. Если вас лишили […]
  • Разглашение правил Разглашение конфиденциальной информации Находка для шпиона это болтун. Из всех условий которые способствуют овладению конфиденциальным данными, лишняя болтливость сотрудников предприятия являет собой 32%. Это третья часть. Если же добавить тот факт, что при безответственным обменом опыта […]
  • Образец приказ об уничтожении документов с истекшим сроком хранения Акт о выделении к уничтожению документов не подлежащих хранению Акт об уничтожении документов составляется тогда, когда предприятие или организация избавляется от накопленных за годы работы бумаг. Это могут быть испорченные или утратившие свою актуальность документы, а также бумажные […]
  • Приказ о приеме на работу сроком на 1 месяц Оформление и издание приказа о приеме на работу Обновление: 17 марта 2017 г. Оформление трудоустройства работника строго регламентировано трудовым законодательством. Издание приказа о приеме на работу занимает одно из центральных мест в этой процедуре наряду с заключением трудового […]
  • Договор купли продажи продуктов образец You are here Договор купли-продажи товара Договор может быть заключен на куплю - продажу товара, имеющегося в наличии у продавца в момент заключения договора, а также товара, который будет создан или приобретен продавцом в будущем, если иное не установлено законом или не вытекает […]