Кратность 4 правило

Признаки делимости натуральных чисел на 2, 3, 4, 5, 6, 9, 10, 11, 25 и разрядную единицу

Для упрощения деления натуральных чисел были выведены правила деления на числа первого десятка и числа 11, 25, которые объединены в раздел признаков делимости натуральных чисел. Ниже приводятся правила, по которым анализ числа без его деления на другое натуральное число даст ответ на вопрос, кратно ли натуральное число числам 2, 3, 4, 5, 6, 9, 10, 11, 25 и разрядной единице?

Натуральные числа, имеющие в первом разряде цифры (оканчивающиеся на) 2,4,6,8,0, называются четными .

Признак делимости чисел на 2

На 2 делятся все четные натуральные числа, например: 172, 94,67 838, 1670.

Признак делимости чисел на 3

На 3 делятся все натуральные числа, сумма цифр которых кратна 3. Например:
39 (3 + 9 = 12; 12 : 3 = 4);

16 734 (1 + 6 + 7 + 3 + 4 = 21; 21:3 = 7).

Признак делимости чисел на 4

На 4 делятся все натуральные числа, две последние цифры которых составляют нули или число, кратное 4. Например:
124 (24 : 4 = 6);
103 456 (56 : 4 = 14).

Признак делимости чисел на 5

На 5 делятся все натуральные числа, оканчивающиеся на 5 или 0. Например: 125; 10 720.

Признак делимости чисел на 6

На 6 делятся те натуральные числа, которые делятся на 2 и на 3 одновременно (все четные числа, которые делятся на 3). Например: 126 (б — четное, 1 + 2 + 6 = 9, 9 : 3 = 3).

Признак делимости чисел на 9

На 9 делятся те натуральные числа, сумма цифр которых кратна 9. Например:
1179 (1 + 1 + 7 + 9 = 18, 18 : 9 = 2).

Признак делимости чисел на 10

На 10 делятся все натуральные числа, оканчивающиеся на 0. Например: 30; 980; 1 200; 1 570.

Признак делимости чисел на 11

На 11 делятся только те натуральные числа, у которых сумма цифр, занимающих четные места, равна сумме цифр, занимающих нечетные места, или разность суммы цифр нечетных мест и суммы цифр четных мест кратна 11. Например:
105787 (1 + 5 + 8 = 14 и 0 + 7 + 7 = 14);
9 163 627 (9 + 6 + б + 7 = 28 и 1 + 3 + 2 = 6);
28 — 6 = 22; 22 : 11 = 2).

Признак делимости чисел на 25

На 25 делятся те натуральные числа, две последние цифры которых — нули или составляют число, кратное 25. Например:
2 300; 650 ( 50 : 25 = 2);

1 475 (75 : 25 = 3).

Признак делимости чисел на разрядную единицу

На разрядную единицу делятся те натуральные числа, у которых количество нулей больше или равно количеству нулей разрядной единицы. Например: 12 000 делится на 10, 100 и 1000.

Кратность 4 правило

Признак делимости — это правило, позволяющее быстро определить, является ли число кратным заранее заданному числу, без необходимости выполнять деление. Рассмотрим несколько основных признаков деления:

Признак делимости на 2 n
Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 5 n
Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 10 n -1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n — 1 тогда и только тогда, когда само число делится на 10 n — 1.

Признак делимости на 10 n
Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр — нули.

Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признаки делимости

Признаки делимости на 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.

Признак делимости на 2. Число делится на 2, если его последняя цифра — ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.

Признак делимости на 4. Число делится на 4, если две его последние цифры — нули или образуют число, которое делится на 4.

Признак делимости на 8. Число делится на 8, если три его последние цифры — нули или образуют число, которое делится на 8.

Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.

Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.

Признак делимости на 5. Число делится на 5, если его последняя цифра — ноль или 5.

Признак делимости на 25. Число делится на 25, если две его последние цифры — нули или образуют число, которое делится на 25.

Признак делимости на 10. Число делится на 10, если его последняя цифра — ноль.

Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.

Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.

Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.

Существуют признаки делимости и для некоторых других чисел, однако они более сложные и в программе средней школы не рассматриваются.

П р и м е р . Число 378015 делится на 3, так как сумма его цифр равна:

3 + 7 + 8 + 0 + 1 + 5 = 24, а это число делится на 3. Данное

число делится на 5, так как его последняя цифра 5. Наконец,

это число делится на 11, так как суммы его нечётных цифр:

3 + 8 + 1 = 12 и чётных цифр 7 + 0 + 5 = 12 равны.

Но это число не делится на 2, 4, 6, 8, 9, 10, 25, 100 и 1000, так как …

А вот эти случаи вы проверите самостоятельно!

Изучаем математику вместе!

Признаки делимости на 11

Всего существует три важных признака делимости на 11.

Термин «знакочередующаяся» означает, что первое слагаемое суммы берётся со знаком «плюс», второе — со знаком «минус», третье — опять со знаком «плюс» и т.д. То есть знаки перед слагаемыми чередуются.

Этот признак является наиболее простым и удобным. К тому же его проще всего запомнить.

Решение: а) 1234321. Знакочередующаяся сумма цифр этого числа равна 1 − 2 + 3 − 4 + 3 − 2 + 1 = 0. Так как 0 делится на 11, то и число 1234321 делится на 11. Если не верите — возьмите калькулятор и проверьте! Вообще говоря, многие красивые числа делятся на 11. Ответ: делится.

б) 10101. Знакочередующаяся сумма цифр этого числа равна 1 − 0 + 1 − 0 + 1 = 3. Число 3 на 11 не делится, поэтому 10101 не делится на 11. Ответ: не делится.

Для формулировки оставшихся двух признаков делимости на 11 введём такое определение:

Трёхзначные грани числа — это числа, полученные разбиением исходного числа на трёхзначные числа. Например, разбиение числа 1234567890 на трёхзначные грани выглядит так: 1|234|567|890. Числа 1, 234, 567, 890 являются трёхзначными гранями числа 1234567890.

Решение: а) применим 2-й признак делимости на 11. Сумма двузначных граней числа 1002001 равна 1 + 20 + 0 + 1 = 22. Число 22 делится на 11, поэтому 1002001 делится на 11.

б) применим 3-й признак делимости на 11. Разбиваем число 1002001 на трёхзначные грани: 1|002|001. Их знакочередующаяся сумма равна 1 − 2 + 1 = 0 — делится на 11. Поэтому 1002001 делится на 11.

Доказательство этих признаков строится на представлении чисел в десятичной системе счисления. Подробное доказательство приведено в этой статье.

Признак делимости на 11

Существует и другие признаки делимости кроме перечисленных, но они на порядок сложнее. Для тех, кому интересно, приводим пример признака делимости на 11 .

Признак делимости на 11

Число делится на 11 , если сумма цифр, которые стоят на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11 .

В самом деле признак делимости на 11 очень интересен, попробуем разобраться на примере:

  • Проверим, делится ли 671 на 11 .

Итак, цифры которые стоят на нечетных местах — это 6 (стоит на первом месте) и 1 (стоит на третьем месте). Цифра, которая стоит на четном месте, это 7 (стоит на втором месте). 6 + 1 = 7 . Сумма цифр стоящих на нечетном месте равна сумме цифр на четном месте, значит 671 делится на 11 .

  • Проверим делится ли 3905 на 11 .

Цифры которые стоят на нечетных местах — это 3 (стоит на первом месте) и 0 (стоит на третьем месте). Цифры, которые стоят на четном месте это 9 (стоит на втором месте) и 5 (стоит на четвертом месте).

Сумма цифр, стоящих на нечетном месте, не равна сумме цифр на четном месте, но суммы цифр отличаются ровно на 11 , т.к. 14 − 3 = 11 . Значит 3905 делится на 11 .

Уточнение для признака делимости на 11

На самом деле, правило, описанное выше — это упрощенная версия полного признака делимости на 11 . В большинстве случаев при решении задач школьного курса математики его достаточно.

Но если быть точным, признак делимости звучит следующим образом.

Число делится на 11 , если сумма цифр, которые стоят на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на число, которое делится на 11 .

Разберемся на примере.

  • Проверим, делится ли число 90 904 на 11 без остатка.
  1. Вычислим сумму цифр на нечетных местах:

    Еще по теме:

    • Что такое валопровод на судне Судовые валопроводы и движители Назначение, устройство и основные части валопровода Главное назначение валопровода — передавать крутящий момент от главного двигателя гребному винту (движителю), а также воспринимать и передавать корпусу судна упор, создаваемый гребным винтом. Количество […]
    • Штрафы с камер спб Камеры видеонаблюдения гибдд Список видеокамер ГИБДД в Санкт-Петербурге Видеокамеры ГИБДД установлены на следущих улицах: 1. Ленинский / Народного ополчения. 2. Кубинская / Благодатная. 3. Ташкентская / Митрофаньевское. 4. Лиговский / 2-ая советская. 5. Лиговский / Ульяны Громовой. 6. […]
    • Закон о частной исполнительной деятельности Закон РФ от 11 марта 1992 г. N 2487-I "О частной детективной и охранной деятельности в Российской Федерации" (с изменениями и дополнениями) Закон РФ от 11 марта 1992 г. N 2487-I"О частной детективной и охранной деятельности в Российской Федерации" С изменениями и дополнениями от: 21 […]
    • Когда был принят закон рф об обороне Федеральный закон от 31 мая 1996 г. N 61-ФЗ "Об обороне" (с изменениями и дополнениями) Федеральный закон от 31 мая 1996 г. N 61-ФЗ"Об обороне" С изменениями и дополнениями от: 30 декабря 1999 г., 30 июня, 11 ноября 2003 г., 29 июня, 22 августа, 29 декабря 2004 г., 7 марта, 4 апреля, 26 […]
    • Приказ по коррупции в доу Приказы по противодействии коррупции в ДОУ. ПРИКАЗ От 02.03.2015 г. № 1«О возложении обязанностей по профилактике и противодействию коррупции» ПРИКАЗ От 02.03.2015 г. № 2 «Об утверждении Плана антикоррупционных мероприятий МБДОУ Детский сад № 22» ПРИКАЗ От 02.03.2015 г. № 3 «О введении […]
    • Джеймс стерлинг смена правил Читать онлайн "Смена правил (ЛП)" автора Стерлинг Джеймс - RuLit - Страница 1 (Идеальная игра #2) Переводчик и редактор – Ольга Синячкина Переведено специально для группы http://vk.com/eabooks_com Любое копирование без ссылки на группу и переводчика ЗАПРЕЩЕНО! Пожалуйста, уважайте чужой […]
    • Пособия для артиллерии Артиллерия (Никифоров Н. Н., Туркин П. И., Жеребцов А. А., Галиенко С. Г. Артиллерия / Под общ. ред. Чистякова М. Н. - М.: Воениздат МО СССР, 1953.) Материал предоставлен: Danila - Master of Science (M.Sc.) in Physics Министерства Обороны Союза ССР 5-е издание, переработанное и […]
    • Оглавление уголовного кодекса Уголовный кодекс Российской Федерации Уголовный кодекс РФ от 13 июня 1996 г. N 63-ФЗ (внесены правки от 27 мая, 25 июня 1998 г., 9 февраля, 15, 18 марта, 9 июля 1999 г., 9, 20 марта, 19 июня, 7 августа, 17 ноября, 29 декабря 2001 г., 4, 14 марта, 7 мая, 25 июня, 24, 25 июля, 31 октября […]