Закон движения планеты вокруг солнца

Астрономия

Тестирование онлайн

История открытия

Вкратце история его такова. Еще древние, наблюдая за движением планет на небе, догадались, что все они, вместе с Землей, «ходят» вокруг Солнца. Позднее, когда люди забыли то, о чем знали прежде, это открытие заново сделал Коперник. И тогда возник новый вопрос: как именно планеты ходят вокруг Солнца, каково их движение? Ходят ли они по кругу и Солнце находится в центре или они движутся по какой-нибудь другой кривой? Как быстро они движутся? И так далее.

Выяснилось это не так скоро. После Коперника снова настали смутные времена и разгорелись великие споры о том, ходят ли планеты вместе с Землей вокруг Солнца или Земля находится в центре Вселенной. Тогда человек по имени Тихо Браге (Тихо Браге (1546-1601) — датский астроном) придумал, как можно ответить на этот вопрос. Он решил, что нужно очень внимательно следить за тем, где появляются на небе планеты, точно это записывать и тогда уже выбирать между двумя враждебными теориями. Это и было началом современной науки, ключом к правильному пониманию природы — наблюдать за предметом, записывать все подробности и надеяться, что полученные таким способом сведения послужат основой для того или иного теоретического истолкования. И вот Тихо Браге, человек богатый, владевший островом поблизости от Копенгагена, оборудовал свой остров большими бронзовыми кругами и специальными наблюдательными пунктами и записывал ночь за ночью положения планет. Лишь ценой такого тяжелого труда достается нам любое открытие.

Когда все эти данные были собраны, они попали в руки Кеплера (Иоганн Кеплер (1571-1630) -немецкий астроном и математик, был помощником Браге), который и пытался решить, как движутся планеты вокруг Солнца. Он искал решение методом проб и ошибок. Однажды ему показалось, что он уже получил ответ: он решил, что планеты движутся по кругу, но Солнце лежит не в центре. Потом Кеплер заметил, что одна из планет, кажется Марс, отклоняется от нужного положения на 8 угловых минут, и понял, что полученный им ответ неверен, так как Тихо Браге не мог допустить такую большую ошибку. Полагаясь на точность наблюдений, он решил пересмотреть свою теорию и в конце концов обнаружил три факта.

Законы движения планет вокруг Солнца

Сначала Кеплер установил, что планеты движутся вокруг Солнца по эллипсам и Солнце находится в одном из фокусов. Эллипс — это кривая, о которой знают все художники, потому что она представляет собой растянутый круг. Дети тоже знают о нем: им рассказывали, что если продеть в кольцо бечевку, закрепить ее концы и вставить в кольцо карандаш, то он опишет эллипс.

Две точки А и В — фокусы. Орбита планеты — эллипс. Солнце находится в одном из фокусов. Возникает другой вопрос: как движется планета по эллипсу? Идет ли она быстрее, когда находится ближе к Солнцу? Замедляет ли движение, удаляясь от него? Кеплер ответил и на этот вопрос. Он обнаружил, что если взять два положения планеты разделенных друг от друга определенным промежутком времени, скажем тремя неделями, потом взять другую часть орбиты и там — тоже два положения планеты разделенные тремя неделями, и провести линии (ученые называют их радиус-векторами) от Солнца к планете, то площадь заключенная между орбитой планеты и парой линий которые отделены друг от друга тремя неделями всюду одинакова, в любой части орбиты. А чтобы эти площади были одинаковы, планета должна идти быстрее, когда она ближе к Солнцу, и медленнее, когда она далеко от него.

Еще через несколько лет Кеплер сформулировал третье правило, которое касалось, не движения одной планеты вокруг Солнца, а связывало движения различных планет друг с другом. Оно гласило, что время полного оборота планеты вокруг Солнца зависит от величины орбиты и пропорциорционально квадратному корню из куба этой величины. А величиной орбиты считается диаметр, пересекающий самое широкое место эллипса.

Так Кеплер открыл три закона, которые можно свести в один, если сказать, что орбита планеты представляет собой эллипс — за равные промежутки времени радиус-вектор планеты описывает равные площади и время (период) обращения планеты вокруг Солнца пропорционально величине орбиты в степени три вторых, т. е. квадратному корню из куба величины орбиты. Эти три закона Кеплера полностью описывают движение планет вокруг Солнца.

Тем временем Галилей открыл великий принцип инерции. Затем наступила очередь Ньютона, который решил, что планете, вращающейся вокруг Солнца, не нужна сила, чтобы двигаться вперед; если бы никакой силы не было, планета летела бы по касательной. Но на самом деле планета летит не по прямой. Она все время оказывается не в том месте, куда попала бы, если бы летела свободно, а ближе к Солнцу. Другими словами, ее скорость, ее движение отклоняются в сторону Солнца.

Стало ясно, что источник этой силы (силы притяжения) находится где-то около Солнца.

Люди рассматривали в телескоп Юпитер со спутниками, обращающимися вокруг него, и им это напоминало маленькую Солнечную систему. Все выглядело так, будто спутники притягиваются к Юпитеру. Луна тоже вращается вокруг Земли и притягивается к ней точно таким же образом. Естественно, возникла мысль, что притяжение действует повсюду. Оставалось лишь обобщить эти наблюдения и сказать, что все тела притягивают друг друга. А значит, Земля должна притягивать Луну так же, как Солнце притягивает планеты. Но известно, что Земля притягивает и обычные предметы: вы, например, прочно сидите на стуле, хотя вам, может быть, и хотелось бы летать по воздуху. Тяготение предметов к Земле было явлением, хорошо известным. Ньютон предположил, что Луну на орбите удерживают те же силы, которые притягивают предметы к Земле.

Почему происходят приливы

Во-первых, приливы. Приливы вызваны тем, что Луна сама притягивает Землю и ее океаны. Так думали раньше, но вот что оказалось необъяснимым: если Луна притягивает воды и поднимает их над ближней стороной Земли, то за сутки происходил бы лишь один прилив — прямо под Луной. На самом же деле, как мы знаем, приливы повторяются примерно через 12 часов, т. е. два раза в сутки. Была и другая школа, которая придерживалась противоположных взглядов. Ее приверженцы считали, что Луна притягивает Землю, а вода за ней не успевает. Ньютон первым понял, что происходит на самом деле: притяжение Луны одинаково действует на Землю и на воду, если они одинаково удалены. Но вода в точке у ближе к Луне, чем Земля, а в точке х — дальше. В у вода притягивается к Луне сильнее, чем Земля, а в х — слабее. Поэтому получается комбинация двух предыдущих картинок, которая и дает двойной прилив.

Фактически Земля делает то же самое, что и Луна — она движется по кругу. Сила, с которой Луна действует на Землю, уравновешивается — но чем? Как Луна ходит по кругу, чтобы уравновесить притяжение Земли, точно так же ходит по кругу и Земля. Обе они обращаются вокруг общего центра, и силы на Земле уравновешены так, что вода в х притягивается Луной слабее, в у — сильнее и в обоих местах вода вспучивается. Так были объяснены приливы и почему они происходят дважды в сутки.

Открытие скорости света

С развитием науки измерения производились все точнее и подтверждения ньютоновских законов становились все более убедительными. Первые точные измерения касались спутников Юпитера. Казалось бы, если тщательно наблюдать за их обращением, то можно убедиться, что все происходит согласно Ньютону. Однако выяснилось, что это не так. Спутники Юпитера появлялись в расчетных точках то на 8 мин раньше, то на 8 мин позже, чем полагалось бы согласно законам Ньютона. Обнаружилось, что они опережают график, когда Юпитер сближается с Землей, и отстают, когда Юпитер и Земля расходятся, — очень странное явление.

Рёмер (Олаф Рёмер (1644-1710) — датский астроном), убежденный в правильности закона тяготения, пришел к интересному выводу, что для путешествия от спутников Юпитера до Земли свету требуется определенное время, и, глядя на спутники Юпитера, мы видим их не там, где они находятся сейчас, а там, где они были несколько минут назад — столько минут, сколько требуется свету, чтобы дойти до нас. Когда Юпитер ближе к нам, свет приходит быстрее, а когда Юпитер дальше — свет идет дольше; поэтому Рёмеру пришлось внести поправку в наблюдения на эту разницу во времени, т.е. учесть, что иногда мы делаем эти наблюдения раньше, а иногда позже. Отсюда ему удалось определить скорость света. Так было впервые установлено, что свет распространяется не мгновенно

Открытие планеты

Возникла еще одна проблема: планеты не должны двигаться по эллипсам, потому что, согласно законам Ньютона, они не только притягиваются Солнцем, но и притягивают друг друга — слабо, но все же притягивают, и это слегка изменяет их движение. Уже были известны большие планеты — Юпитер, Сатурн, Уран — и было подсчитано, насколько они должны отклоняться от своих совершенных кеплеровских орбит-эллипсов за счет взаимного притяжения. Когда эти расчеты были закончены и проверены наблюдениями, обнаружилось, что Юпитер и Сатурн движутся в полном согласии с расчетами, а с Ураном творится что-то странное. Казалось бы, еще повод усомниться в законах Ньютона; но главное — не падать духом! Два человека, Джон Кауч Адаме (1819-1892) — английский математик и астроном; Урбен Леверье (1811-1877)-французский астроном, которые выполнили эти расчеты независимо друг от друга и почти одновременно, предположили, что на движение Урана влияет невидимая планета. Они послали письма в обсерватории с предложением: «Направьте ваш телескоп туда-то и вы увидите неизвестную планету». «Что за чепуха,- сказали в одной из обсерваторий,- какому-то мальчишке попала в руки бумага и карандаш, и он указывает нам, где искать новую планету». В другой обсерватории дирекция была легче на подъем — и там открыли Нептун!

Закон движения планеты вокруг солнца

Чем ближе планета к Солнцу, тем, больше ее линейная и угловая скорости и короче период обращения вокруг Солнца. Мы наблюдаем планеты с Земли, которая сама обращается вокруг Солнца. Это движение Земли необходимо учитывать, чтобы узнать периоды обращения планет в невращающейся инерциальной системе отсчета, или, как часто говорят, по отношению к звездам.

Период обращения планет вокруг Солнца по отношению к звездам называется звездным или сидерическим периодом. Наименьший звездный период обращения у планеты Меркурий — 88 сут. У Марса он составляет почти 2 года, а у Юпитера — 12 лет и, все возрастая с удалением от Солнца, у Плутона доходит почти до 250 лет.

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому ученому Иоганну Кеплеру. В начале

XVII в. Кеплер установил три закона движения планет. Они названы законами Кеплера.

Первый закон Кеплера: каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце (рис. 24).

Эллипсом (рис. 24) называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой ее точки от двух точек, называемых фокусами, остается постоянной. Эта сумма расстояний равна длине большой оси эллипса (рис. 24). Точка О — центр эллипса, К и 5 — фокусы. Солнце находится в данном случае в фокусе — большая полуось эллипса. Большая полуось а является средним расстоянием планеты от Солнца:

Ближайшая к Солнцу точка орбиты А называется перигелием, а самая далекая от него точка называется афелием.

Степень вытянутости эллипса характеризуется его эксцентриситетом

. Эксцентриситет равен отношению расстояния фокуса от центра к длине большой полуоси а, т. е. совпадении фокусов с центром эллипс превращается в окружность.

Орбиты планет — эллипсы, мало отличающиеся от окружностей, их эксцентриситеты малы. Например, эксцентриситет орбиты Земли

Эксцентриситеты орбит у большинства комет близки к единице. При второй фокус эллипса удаляется в бесконечность, так что орбита становится разомкнутой кривой (рис. 25), называемой параболой. При орбита является гиперболой (рис. 25). Двигаясь по параболе или гиперболе, тело только однажды огибает Солнце и навсегда удаляется от него.

Кеплер открыл свои законы, изучая периодическое обращение Марса вокруг Солнца. Ньютон, исходя из наблюдений движения Луны и законов Кеплера, открыл закон всемирного тяготения. При этом он доказал, что под действием взаимного тяготения тела могут двигаться друг относительно друга по эллипсу (в частности, по кругу), по параболе и по гиперболе. Ньютон установил, что вид орбиты, которую описывает тело, зависит от его скорости в данном месте орбиты.

При некоторой скорости тело описывает окружность около притягивающего центра. Такую скорость называют первой космической или круговой скоростью, ее сообщают телам, запускаемым в качестве искусственных спутников Земли по круговым орбитам. Вывод формулы для вычисления первой космической скорости известен из курса физики. Первая космическая скорость вблизи поверхности Земли составляет около

Если телу сообщить скорость, в раза большую круговой называемую второй космической или параболической скоростью, то тело навсегда удалится от Земли и может стать спутником Солнца. В этом случае движение тела будет происходить по параболе относительно Земли. При еще большей скорости относительно Земли тело полетит по гиперболе.

Средняя скорость движения Земли по орбите Орбита Земли близка к окружности, а скорость движения Земли по орбите близка к круговой на расстоянии Земли от Солнца. Параболическая скорость на расстоянии Земли от Солнца равна При такой скорости относительно Солнца тело с орбиты Земли покинет Солнечную систему.

2. Второй и третий законы Кеплера.

Второй закон Кеплера (закон площадей): радиус-вектор планеты за одинаковые промежутки времени описывает равные площади, т. е. площади равны (рис. 24), если дуги описаны планетой за одинаковые промежутки времени. Но длины этих дуг, ограничивающих равные площади, различны: Следовательно, линейная скорость движения планеты неодинакова в разных точках ее

Рис. 24. Закон площадей (второй закон Кеплера).

Рис. 25. Формы орбит космических ракет (посланные по стрелке, они не вернутся, если пойдут по параболе или гиперболе, и по прерывистым частям кривых движения не будет).

орбиты. Скорость планеты при движении ее по орбите тем больше, чем ближе она к Солнцу. В перигелии скорость планеты наибольшая, в афелии наименьшая. Таким образом, второй закон Кеплера количественно определяет изменение скорости движения планеты по эллипсу.

Третий закон Кеплера: квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит. Если большую полуось орбиты и звездный период обращения одной планеты обозначить через а другой планеты — через то формула третьего закона будет такова:

Этот закон Кеплера связывает средние расстояния планет от Солнца с периодами их звездных обращений и позволяет большие полуоси всех планетных орбит выразить в единицах большой полуоси земной орбиты. Большая полуось земной орбиты принята за астрономическую единицу расстояний. В астрономических единицах средние расстояния планет от Солнца были определены раньше, чем узнали длину астрономической единицы в километрах.

Закон движения планеты вокруг солнца

Проект «Физика и Астрономия»

Законы Кеплера — законы движения планет

Законы Кеплера — это три закона движения планет относительно Солнца. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

Первый закон Кеплера:

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=c/a, где с — расстояние от центра эллипса до его фокуса; а — большая полуось. Величина «е» называется эксцентриситетом эллипса. При с=0 и е=0 эллипс превращается в окуржность.

Второй закон Кеплера:

Каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удаленная точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелие.

Третий закон Кеплера:

Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искуственных спутников.

Кеплеровские законы были уточнены и объяснены на основе закона всемирного тяготения Исааком Ньютоном. Закон же всемирного тяготения гласит:
Сила F взаимного притяжения между материальными точками массами m1 и m2, находящиеся на расстоянии r друг от друга, равна: F=Gm1m2/r^2, где G — гравитационная постоянная. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера).

Таким образом в формулировке Ньютона законы Кеплера звучат так:

— первый закон: под дествием силы тяготения одно небесное тело может двигаться по отношению к другому по окружности, эллипсу, параболе и гиперболе. Надо сказать, что он справедлив для всех тел, между которыми действует взаимное притяжение.
— формулирование второго закона Кеплера не дана, так как в этом не было необходимости.
— третий закон Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

Таковы три закона Кеплера — три закона движения планет.

Законы движения планет

Планеты благодаря своим внешне сложным движениям сыграли решающую роль в астрономии и вообще в построении фундамента механики и физики. Еще древнегреческие астрономы поставили вопрос, не являются ли наблюдаемые сложные перемещения по небу лишь отражением более регулярных движений планет в пространстве. С этого времени начинается теоретическое построение схем планетной системы, или же, как мы говорили выше, кинематики планетных движений в пространстве.

Один из первых коперниканцев, немецкий математик и астроном Эразм Рейнгольд (1511—1553) составил в 1551 году, основываясь на гелиоцентрической системе Коперника, таблицы движения планет, названные им «Прусские таблицы». Эти таблицы оказались более точными, чем все предыдущие, основанные на старых схемах, и это очень способствовало укреплению идеи гелиоцентризма, с огромным трудом пробивающей себе путь сквозь устоявшиеся веками и привычные для тех времен взгляды, а также преодолевающей реакционное идеологическое давление церкви.

Тем не менее вскоре астрономы обнаружили расхождение и этих таблиц с данными наблюдений движения небесных тел.

Для передовых ученых было ясно, что учение Коперника правильно, но надо было глубже исследовать и выяснить законы движения планет. Эту задачу решил великий немецкий ученый Кеплер.

Иоганн Кеплер (1571—1630) появился на свет в маленьком городке Вейле близ Штутгарта. Кеплер родился в бедной семье, и поэтому ему с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника.

В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Еще до окончания университета, в 1594 году, Иоганна посылают преподавать математику в протестантское училище города Граца, столицы австрийской провинции Штирии.

Уже в 1596 году он издает «Космографическую тайну», где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определенном порядке вписаны и вокруг которых описаны правильные многогранники. Несмотря на то что этот труд Кеплера оставался еще образцом схоластического, квазинаучного мудрствования, он принес автору известность Знаменитый датский астроном-наблюдатель Тихо Браге (1546—1601), скептически отнесшийся к самой схеме, отдал должное самостоятельности мышления молодого ученого, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.

В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вел астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем. Ученый с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал свое объяснение устройства мира: планеты он признавал спутниками Солнца, а Солнце, Луну и звезды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.

Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.

Отправным пунктом для Кеплера служило сравнение теории и наблюдений. Дело в том, что к концу XVI века Прусские таблицы, составленные, как уже говорилось выше, стали предсказывать движение планет очень неточно Наблюденные и вычисленные по этим таблицам положения планет отличались на 4—5 градусов, что было недопустимо в астрономической практике. Отсюда вытекало, что планетная теория Коперника нуждается в исправлении и дополнении.

В начале Кеплер пошел по пути уточнения и усложнения схемы Коперника. Конечно, он был глубоко убежден в истинности принципа гелиоцентризма и стал подбирать новые комбинации окружностей (эпициклов, эксцентров). Ему удалось подобрать, в конце концов, такую комбинацию, что его схема давала ошибку по сравнению с наблюдениями до 8 минут. Но Кеплер был уверен, что Тихо Браге в своих наблюдениях не мог допускать таких ошибок.

Поэтому Кеплер заключил, что «виновата» теория, поскольку она не согласуется с астрономической практикой. Он отбросил полностью схему, основанную на эпициклах и эксцентрах, и стал искать другие схемы.

Кеплер пришел к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путем вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решен быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, мы придем к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путем суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.

Первый закон Кеплера предполагает, что Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Так как эллипс — плоская фигура, то первый закон подразумевает, что каждая планета движется, оставаясь все время в одной и той же плоскости.

Второй закон звучит так: радиус-вектор планеты (т. е. отрезок, соединяющий Солнце и планету) описывает равные площади в равные промежутки времени. Этот закон часто называют законом площадей. Второй закон указывает, прежде всего, на изменение скорости движения планеты по ее орбите: чем ближе планета подходит к Солнцу, тем быстрее она движется. Но этот закон дает на самом деле больше. Он целиком определяет движение планеты по ее эллиптической орбите.

Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая «Новая астрономия» — изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлек к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.

Кеплер интуитивно чувствовал, что существуют закономерности, связывающие всю планетную систему в целом. И он ищет эти закономерности в течение десяти лет, прошедших после публикации «Новой астрономии». Богатейшая фантазия и огромное усердие привели Кеплера к его так называемому третьему закону, который, как и первые два, играет важнейшую роль в астрономии. Кеплер издает «Гармонию мира», где он формулирует третий закон планетных движений. Ученый установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет вокруг солнца относятся между собой как кубы их средних расстояний от Солнца. Это — третий закон Кеплера.

«Третий закон Кеплера играет ключевую роль при определении масс планет и спутников, — пишут в своей книге Е.А. Гребенников и Ю.А. Рябов. — Действительно, периоды обращения планет вокруг Солнца и их гелиоцентрические расстояния определяются с помощью специальных математических методов обработки наблюдений, а массы планет непосредственно из наблюдений невозможно получить. В нашем распоряжении нет грандиозных космических весов, на одну чашу которых мы положили бы Солнце, а на другую — планеты. Третий закон Кеплера и компенсирует отсутствие таких космических весов, так как с его помощью мы легко можем определить массы небесных тел, образующих единую систему».

Законы Кеплера замечательны и тем, что они, если можно так выразиться, более точны, чем сама действительность. Они представляют собой точные математические законы движения для идеализированной «Солнечной системы», в которой планеты — материальные точки бесконечно малой массы по сравнению с «Солнцем». В действительности же планеты имеют ощутимую массу, так что в фактическом их движении имеются отклонения от законов Кеплера. Такая ситуация имеет место быть в случае многих известных сейчас физических законов.

Сегодня можно сказать, что законы Кеплера точно описывают движение планеты в рамках задачи двух тел, а наша Солнечная система является многопланетной системой, поэтому для нее эти законы являются лишь приближенными. Парадоксальным является к тому же тот факт, что именно для Марса, наблюдения которого и привели к их открытию, законы Кеплера выполняются менее точно.

Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют свое значение: научившись учитывать взаимодействие небесных тел, ученые их используют не только для расчета движений естественных небесных тел, но, что особенно важно, и искусственных, таких, как космические корабли, свидетелями появления и совершенствования которых является наше поколение.

Движение планет вокруг Солнца

Планеты Солнечной системы

Еще в стародавние времена ученые мужи начали понимать, что не Солнце вращается вокруг нашей планеты, а все происходит с точностью наоборот. Точку в этом спорном для человечества факте поставил Николай Коперник. Польский астроном создал свою гелиоцентрическую систему, в которой убедительно доказал, что Земля не является центром Вселенной, а все планеты, по его твердому убеждению, вращаются по орбитам вокруг Солнца. Работа польского ученого «О вращении небесных сфер», была издана в немецком Нюрнберге в 1543 году.

До Коперника

Траектория движения в пространстве

Представления о том, как расположены планеты на небосводе первым в своем трактате «Великое математическое построение по астрономии», высказал древнегреческий астроном Птолемей. Он первым предположил, что они совершают свои движения по кругу. Но Птолемей ошибочно считал, что все планеты, а также Луна и Солнце движутся вокруг Земли. До работы Коперника его трактат считался общепринятым как в арабском, так и западном мире.

От Браге до Кеплера

После смерти Коперника его труды продолжил датчанин Тихо Браге. Астроном, являющийся весьма состоятельным человеком, оборудовал принадлежащий ему остров, внушительными бронзовыми кругами, на которые наносил результаты наблюдения за небесными телами. Результаты, полученные Браге, помогли в исследовании математику Иоганну Кеплеру. Движение планет Солнечной системы именно немец систематизировал и вывел три своих знаменитых закона.

От Кеплера до Ньютона

Кеплер впервые доказал, что все 6 известных к тому времени планет двигаются вокруг Солнца не по кругу, а по эллипсам. Англичанин Исаак Ньютон, открыв закон всемирного тяготения, существенно продвинул представления человечества об эллиптических орбитах небесных тел. Его объяснения, что приливы и отливы на Земле происходят под влиянием Луны, оказались убедительными для научного мира.

Вокруг Солнца

Сравнительные размеры крупнейших спутников Солнечной системы и планет Земной группы.

Срок, за который планеты совершают полный оборот вокруг Солнца, естественно различный. У Меркурия, самой ближней к звезде, он составляет 88 земных суток. Наша Земля проходит цикл за 365 дней и 6 часов. Самая крупная в Солнечной системе планета Юпитер завершает свой оборот за 11,9 земных лет. Ну а у Плутона, — наиболее удаленной от Солнца планеты оборот и вовсе составляет 247,7 года.

Следует также учесть, что все планеты в нашей Солнечной системе движутся, не вокруг светила, а вокруг так называемого центра масс. Каждая при этом, вращаясь вокруг своей оси, слегка раскачиваются (подобно юле). К тому же и сама ось может ненамного смещаться.

Еще по теме:

  • Федеральным законом 418 фз Прокуратура Московской области С 1 января 2018 года на территории Российской Федерации вступил в силу Федеральный закон от 28.12.2017 № 418-ФЗ «О ежемесячных выплатах семьям, имеющим детей», которым установлены основания и порядок назначения и осуществления ежемесячной выплаты в связи с […]
  • Приказ 218 мчс 12.2.4. Психологическая служба МЧС России 12.2.4. Психологическая служба МЧС России 17 сентября 1999 г. создан Центр экстренной психологической помощи МЧС России, который вначале являлся филиалом Всероссийского центра экстренной радиационной медицины МЧС России (Санкт-Петербург), а с 1 […]
  • Осаго в туле 2018 Калькулятор ОСАГО в Тула на 2018 года Сделайте расчет на калькуляторе, и мы покажем вам где дешевле застраховать машину по ОСАГО в Тула Стоимость ОСАГО в компаниях: Результаты полученные на калькуляторе будут сохранены в Вашем личном кабинете. Вы всегда сможете их посмотреть и сделать […]
  • Что дает договор купли продажи автомобиля Что дает договор купли продажи автомобиля После оформления покупки. Одним из самых распространенных способов для продажи своего транспортного средства остается договор купли-продажи. Такой вариант особенно удобен тем, что данный документ может составить каждый человек, согласовав его как […]
  • Правила на соревнованиях по боевому самбо Правила самбо Основные правила соревнований по самбо В самбо разрешается применять броски, удержания и болевые приёмы на руки и ноги. В самбо броски можно проводить с помощью рук, ног и туловища. В самбо баллы присуждаются за броски и удержания. Бросок — это приём, с помощью […]
  • Памятка по правилам поведения на водоемах Памятка по правилам поведения на водоемах В этом году весна пришла раньше обычного. Лед на реках почти весь сошел, а на закрытых водоемах ледяной покров еще остался и представляет определенную опасность. Очень опасно по нему ходить: в любой момент может рассыпаться с шипением под ногами […]
  • Налог на имущество за 2 квартал сроки Отчет по налогу на имущество в 2017 году Актуально на: 29 июня 2017 г. Организации, являющиеся плательщиками налога на имущество, должны отчитываться перед ИФНС по итогам отчетных периодов, а также по итогам года (ст. 386 НК РФ). Налог на имущество: отчетность в 2017 году По итогам […]
  • Временное разрешение на проживание в москве В какую сумму может стать получение разрешения на РВП? В связи с существенным увеличением желающих получить РВП в России, все чаще задают вопрос «Сколько стоит получить РВП?». Однозначного ответа на этот вопрос нет, так как стоимость зависит от ряда причин. Рассмотрим стоимость всех […]