Закон распределения случайной величины называется равномерным если

Содержание страницы:

Закон распределения случайной величины называется равномерным если

Раздел 6. Типичные законы распределения и числовые характеристики случайных величин

Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Например: пусть y принимает всего 2 значения 1 и -1 с вероятностями 0.5; величина z = -y имеет точно такой же закон распределения.
Во-вторых, очень часто случайные величины имеют подобные законы распределения, т.е., например, р(х) для них выражается формулами одинакового вида, отличающимися только одной или несколькими постоянными. Эти постоянные называются параметрами распределения .

Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений.

1 . Равномерное распределение
Так называют распределение случайной величины, которая может принимать любые значения в интервале (a,b), причем вероятность попадания ее в любой отрезок внутри (a,b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a,b) равна 0.


Рис 6.1 Функция и плотность равномерного распределения

Параметры распределения: a , b

2 . Нормальное распределение
Распределение с плотностью, описываемой формулой

(6.1)

называется нормальным. (Рисунок 6.2)
Параметры распределения: a , σ


Рисунок 6.2 Типичный вид плотности и функции нормального распределения

3 . Распределение Бернулли
Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли , или по биномиальному закону (другое название распределения) .

(6.2)

Здесь n — число испытаний в серии, m — случайная величина (число появлений события А), Рn(m) — вероятность того, что А произойдет именно m раз, q = 1 — р (вероятность того, что А не появится в испытании).

Пример 1: Кость бросают 5 раз, какова вероятность того, что 6 очков выпадет дважды ?
n = 5, m = 2, p = 1/6, q = 5/6

Параметры распределения: n , р

4 . Распределение Пуассона
Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле

(6.3)

Параметр распределения: a

Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни.

Пример 2: число вызовов, поступающих на станцию скорой помощи в течение часа.
Разобьем интервал времени Т (1 час) на малые интервалы dt, такие что вероятность поступления двух и более вызовов в течение dt пренебрежимо мала, а вероятность одного вызова р пропорциональна dt: р = μdt ;
будем рассматривать наблюдение в течение моментов dt как независимые испытания, число таких испытаний за время Т: n = T / dt;
если предполагать, что вероятности поступления вызовов не меняются в течение часа, то полное число вызовов подчиняется закону Бернулли с параметрами: n = T / dt, р = μdt . Устремив dt к нулю, получим, что n стремится к бесконечности, а произведение n×р остается постоянным: а = n×р = μТ.

Пример 3: число молекул идеального газа в некотором фиксированном объеме V.
Разобьем объем V на малые объемы dV такие, что вероятность нахождения двух и более молекул в dV пренебрежимо мала, а вероятность нахождения одной молекулы пропорциональна dV: р = μdV; будем рассматривать наблюдение каждого объемчика dV как независимое испытание, число таких испытаний n=V/dV; если предполагать, что вероятности нахождения молекулы в любом месте внутри V одинаковы, полное число молекул в объеме V подчиняется закону Бернулли с параметрами: n = V / dV, р = μdV. Устремив dV к нулю, получим, что n стремится к бесконечности, а произведение n×р остается постоянным: а = n×р =μV.

Числовые характеристики случайных величин

1 . Математическое ожидание (среднее значение)

Определение:
Математическим ожиданием называется
— для дискретной случайной величины: &nbsp (6.4)

Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)

— для непрерывной случайной величины: ; &nbsp (6.5)

Интеграл должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)

Свойства математического ожидания:

a . Если С — постоянная величина, то МС = С
b . МСх = СМх
c . Математическое ожидание суммы случайных величин всегда равно сумме их математических ожиданий: М(х+y) = Мх + Мy d . Вводится понятие условного математического ожидания. Если случайная величина принимает свои значения хi с различными вероятностями p(xi/Hj) при разных условиях Hj, то условное математическое ожидание определяется

как или ; &nbsp (6.6)

Если известны вероятности событий Hj, может быть найдено полное

математическое ожидание: ; &nbsp (6.7)

Пример 4: Сколько раз в среднем надо бросать монету до первого выпадения герба ? Эту задачу можно решать «в лоб»

Математика и информатика. Учебное пособие по всему курсу


Загрузить всю книгу

5.3.3. Равномерный и нормальный законы распределения непрерывных случайных величин

На практике приходится при решении задач сталкиваться с различными распределениями непрерывных случайных величин. Плотность распределения f(x) непрерывной случайной величины называют законом распределения.

Следует рассмотреть некоторые важные для практики распределения случайных величин и соответствующие им числовые характеристики.

Непрерывная случайная величина X называется распределенной равномерно на отрезке [a,b], если её плотность распределения вероятностей постоянна на данном отрезке:

.

Функция распределения в этом случае согласно (5.7), примет вид:

.

1. Математическое ожидание по формуле (5.11):

.

.

Найти дисперсию и среднее квадратическое отклонение случайной величины X , равномерно распределенной на интервале (2;6).

.

.

Среднее квадратическое отклонение:

Это распределение реализуется, например, в экспериментах, в которых наудачу ставится точка на интервале [ a , b ], при этом случайная величина X – абсцисса поставленной точки.

Вероятность попадания равномерно распределенной непрерывной случайной величины Х на интервале [ a , b ], определяется по формуле (5.9а).

Примером равномерно распределенной непрерывной случайной величины Х является ошибка при округлении отсчета до ближайшего целого деления шкалы измерительного прибора, проградуированной в некоторых единицах.

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего деления. Найти вероятность того, что ошибка отсчета: а) превысит значение 0,04; б) меньше 0,04.

Ошибку округления отсчета можно рассматривать как случайную величину Х, которая распределена равномерно в интервале между двумя соседними делениями. Плотность равномерного распределения по формуле (5.14) равна:

,

где (b – a) – длина интервала, в котором заключены возможные значения Х.

Вне этого интервала f (x) = 0. В рассматриваемой задаче длина интервала, в котором заключены возможные значения Х, равна 0,2. Поэтому плотность распределения вероятностей равна:

.

Тогда ошибка отсчета превысит значение 0,04, если она будет заключена в интервале (0,04; 0,2). По формуле (5.9а) вычисляется вероятность того, что при отсчете будет сделана ошибка превышающая значение 0,04:

.

Ошибка отсчета меньше 0,04 будет заключена в интервале (0; 0,04) с вероятностью:

.

Рис. 5.3. Плотность распределения вероятностей случайной величины, равномерно распределённой на отрезке [a;b]

Непрерывная случайная величина x имеет нормальльное распределение с параметрами: m, s > 0, если плотность распределения вероятностей имеет вид:

Основные законы распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика.

Стоимость: 2000 руб / 90 мин.

Репетитор: Крюков Илья Хассанович

Предметы: математика, экономика, бухгалтерский учет.

Стоимость: 1600 руб / 60 мин.

Репетитор: Скрипаленко Михаил Михайлович

Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

Стоимость: 1200 руб / 60 мин.

Репетитор: Матвеева Милада Андреевна

Предметы: русский язык, литература (ЕГЭ, ГИА).

Стоимость: 1200 руб / 60 мин.

Репетитор: Тверской Василий Борисович

Предметы: математика, физика.

Стоимость: 3500 руб / 90 мин.

Репетитор: Поздняков Андрей Александрович

Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

Стоимость: 2000 руб / 60 мин.

Репетитор: Ершикова Марина Львовна

Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

Стоимость: 1500 руб / 60 мин.

1.Биномиальный закон распределения.

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m — число заказов, полученных компанией на покупку телевизора. Сn m — число сочетаний m телевизоров по n, p — вероятность наступления события А, т.е. заказа телевизора, q — вероятность не наступления события А, т.е. не заказа телевизора, P m,n — вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

P m — вероятность наступления события А в испытание под номером m.
р — вероятность наступления события А в одном испытании.
q = 1 — p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 — что десятый блок оказался неисправным — 0,038742049 , 2 — что все проверяемые блоки оказались исправными — 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M — всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m — число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

λ = np = const
n — число испытаний, стремящиеся к бесконечности
p — вероятность наступления события, стремящаяся к нулю
m — число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B — 0,06 и C — 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

где
а — математическое ожидание случайной величины
σ — среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть — от а до х. (Рис.7)

Закон распределения случайной величины называется равномерным если

3)то есть ось Ох служит горизонтальной асимптотой графика при

4)прих = а; приx > a, приx можно найти из таблиц.

Равномерный закон распределения.

Часто на практике мы имеем дело со случайными величинами, распределенными определенным типовым образом, то есть такими, закон распределения которых имеет некоторую стандартную форму. В прошлой лекции были рассмотрены примеры таких законов распределения для дискретных случайных величин (биномиальный и Пуассона). Для непрерывных случайных величин тоже существуют часто встречающиеся виды закона распределения, и в качестве первого из них рассмотрим равномерный закон.

Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение ( f(x) = const при a x b, f(x) = 0 при x b.

Найдем значение, которое принимает f(x) при Из условия нормировки следует, чтооткуда.

Вероятность попадания равномерно распределенной случайной величины на интервал равна при этом

Вид функции распределения для нормального закона:

Другие виды распределений

Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6), М(Х) можно найти, используя свойство 4 математического ожидания. Пусть Х1 – число появлений А в первом испытании, Х2 – во втором и т.д. При этом каждая из случайных величин Хi задается рядом распределения вида

Равномерное распределение вероятностей

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Напомним определение плотности вероятности.

Плотность распределения (плотность вероятности) $\varphi \left(x\right)$ — это производная функции распределения непрерывной случайной величины.

Введем теперь понятие равномерного распределения вероятностей:

Распределение называется равномерным, если на интервале, содержащем все возможные значения случайной величины, плотность распределения постоянна, то есть:

Найдем значение константы $\ C$, используя следующее свойство плотности распределения: $\int\limits^<+\infty >_<-\infty ><\varphi \left(x\right)dx>=1$

Таким образом, функция плотности равномерного распределения имеет вид:

График имеет следующий вид (рис. 1):

Рисунок 3. Плотность равномерного распределения вероятности

Функция равномерного распределения вероятностей

Найдем теперь функцию распределения при равномерном распределении.

Для этого будем использовать следующую формулу: $F\left(x\right)=\int\limits^x_<-\infty ><\varphi (x)dx>$

  1. При $x ≤ a$, по формуле, получим:
  1. При $a
  1. При $x> 2$, по формуле, получим:

Таким образом, функция распределения имеет вид:

График имеет следующий вид (рис. 2):

Рисунок 5. Функция равномерного распределения вероятности.

Вероятность попадания случайной величины в интервал $(<\mathbf \alpha >,<\mathbf \beta >)$ при равномерном распределении вероятностей

Для нахождения вероятности попадания случайной величины в интервал $(\alpha ,\beta )$ при равномерном распределении вероятностей будем пользоваться следующей формулой:

Среднее квадратическое отклонение:

Лень читать?

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Примеры решения задачи на равномерное распределение вероятностей

Интервал движения между троллейбусами составляет 9 минут.

Составить функцию распределения и плотность распределения случайной величины $X$ ожидания пассажирами троллейбуса.

Найти вероятность того, что пассажир дождется троллейбус меньше чем через три минуты.

Найти вероятность того, что пассажир дождется троллейбус не менее чем через 4 минуты.

Найти математическое ожидание, дисперсию и среднее квадратическое отклонение

  1. Так как непрерывная случайная величина ожидания троллейбуса $X$ равномерно распределена, то $a=0,\ b=9$.

Таким образом, плотность распределения, по формуле функции плотности равномерного распределения вероятности, имеет вид:

По формуле функции равномерного распределения вероятности, нашем случае функция распределения имеет вид:

  1. Данный вопрос можно переформулировать следующим образом: найдем вероятность попадания случайной величины равномерного распределения в интервал $\left(6,9\right).$

\[P\left(6
Данный вопрос можно переформулировать следующим образом: найдем вероятность попадания случайной величины равномерного распределения в интервал $\left(0,5\right).$

Среднее квадратическое отклонение: $\sigma \left(X\right)=\frac<2\sqrt<3>>=\frac<9><2\sqrt<3>>=\frac<3\sqrt<3>><2>$

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Еще по теме:

  • Площадь многоугольника правило Площадь фигур Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут. Площади равных фигур равны. Их периметры тоже равны. Площадь квадрата Для вычисления площади квадрата нужно умножить его длину на саму себя. SEKFM = EK · EK SEKFM = 3 · 3 = […]
  • Умножение дробей на целое число правило Умножение обыкновенных дробей: правила, примеры, решения. Продолжим изучать действия с обыкновенными дробями . Сейчас в центре внимания умножение обыкновенных дробей. В этой статье мы дадим правило умножения обыкновенных дробей, рассмотрим применение этого правила при решении примеров. […]
  • Решение задач закон ома участка цепи Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» «Физика - 10 класс» При решении задач на применение закона Ома необходимо учитывать, что при последовательном соединении проводников сила тока во всех проводниках одинакова, а при […]
  • Виза рф для гражданина эстонии Виза рф для гражданина эстонии последнее обновление 08.12.2017 Оформление визы в Российскую Федерацию Для граждан Эстонии Виза обязательно оформляется до путешествия. Исключением являются туристы круизных лайнеров, которые проводят на территории России не более 72 часов. Необходимые […]
  • Штраф за ветеринарную справку Россельхознадзор / Форум федеральная служба по ветеринарному и фитосанитарному надзору Зарегистрирован: 09/04/2013 11:17:03 Сообщений: 38 Оффлайн Зарегистрирован: 14/11/2012 10:35:21 Сообщений: 119 Оффлайн Не ехидничайте, покажите мне документ,где написано,что на шашлык должно […]
  • Правила на подкрановый путь Приемка подкрановых путей Подкрановые пути для мостовых электрических кранов грузоподъемностью до 20 Т изготовляют из железнодорожных рельсов 2 (рис. 3) по ГОСТ 7173—54, для кранов большей грузоподъемности — из специальных крановых рельсов 7по ГОСТ 4221—65 и независимо от […]
  • Размер пени по налогам физических лиц Какие пени и штрафы взимаются за неуплату в срок налогов по налоговому уведомлению? На основании налогового уведомления налогоплательщики — физические лица уплачивают следующие имущественные налоги (абз. 3 п. 2 ст. 52, п. 3 ст. 363, п. 4 ст. 397, п. 3 ст. 409 НК РФ): транспортный […]
  • Приказ на уменьшение ставок Приказ о переводе на полную ставку (образец) Обновление: 17 мая 2017 г. Образец приказа о переводе работника на неполное рабочее время по соглашению сторон Неполное и полное рабочее время может быть установлено работнику как при приеме на работу, так и во время его трудовой деятельности […]